(Press-News.org) Working with mice, Johns Hopkins researchers have shed light on the activity of a protein pair found in cells that form the walls of blood vessels in the brain and retina, experiments that could lead to therapeutic control of the blood-brain barrier and of blood vessel growth in the eye.
Their work reveals a dual role for the protein pair, called Norrin/Frizzled-4, in managing the blood vessel network that serves the brain and retina. The first job of the protein pair's signaling is to form the network's proper 3-D architecture in the retina during fetal development. The second job, after birth, is to continue signaling to maintain the blood-brain barrier, which gives the brain an extra layer of protection against infection transmitted through the circulatory system.
The Hopkins researchers say results of the study, published online in Cell on Dec. 7, could have treatment implications for disorders of the retinal blood vessels caused by diabetes, and age-related loss of central vision. They also could help clinicians develop a way to temporarily increase the penetrability of the blood-brain barrier, allowing critical drugs to pass through to the brain, says Jeremy Nathans, M.D., Ph.D., a Howard Hughes researcher and professor of molecular biology and genetics at the Institute for Basic Biomedical Sciences at the Johns Hopkins School of Medicine.
Scientists already knew that Frizzled-4 is a protein located on the surface of the cells that create blood vessel walls throughout the body. Genetic mutations that cause Frizzled-4's absence in mice and humans create severe defects in blood vessel development, but only in the retina, the light-absorbing sheet of cells at the back of the eye. Retinal tissue consumes the most oxygen per gram than any other tissue in the body. Therefore, three networked layers of blood vessels are required to fulfill its oxygen needs. So blood vessel defects in the retina generally starve it of oxygen, causing blindness.
In an effort to understand how Frizzled-4 and its activator Norrin work normally, Nathans' team deleted Norrin in mice. As a result, the rodents' retinal arteries and veins became confused and crisscrossed. Alternatively, if they turned Norrin on earlier than usual, the networks began to develop earlier. And in mice missing either Norrin or Frizzled-4, retinal blood vessels grew radially, but they grew slowly and failed to create the second and third networked layers. All of these results suggest that Norrin and Frizzled-4 play an important role in the proper timing and arrangement of the retinal blood vessel network, Nathans says.
The team also found that mice missing just Frizzled-4, besides having major structural defects in their retinal blood vessels, showed signs of a leaky blood-brain barrier and, similarly, a leaky blood-retina barrier. To get at the cause of this, the team used special genetic tricks to control the activity of Frizzled-4 in a time- and cell-specific manner, creating mice that were missing Frizzled-4 in only about one out of every 20 endothelial cells. What they found is that only the cells missing Frizzled-4 were leaky and, surprisingly, the general architecture of the networks was fine.
Nathans explains that, normally, these blood vessel endothelial cells contain permeable "windows" and relatively loose "bolts" connecting the cells together. When in the brain and retina, they have no "windows" and their "bolts" connect them tightly. Nathans adds, "We now know that endothelial cells that make up the blood-brain barrier have to receive signals constantly from nearby brain or retinal cells telling them, 'You're in the brain. Tighten your bolts and close your windows.'"
The "windows" in the other endothelial cells in the body are protein portals that allow large molecules to pass through easily — to be filtered by the kidneys, for example. The central nervous system, including the retina, is a privileged area. If toxins were to pass through an endothelial "window" into the brain, the resulting damage could be detrimental to the brain's activity. So the body seals off these areas from bloodborne pathogens by tightening the "bolts" between and closing the "windows" of the endothelial cells that form the blood vessels servicing those areas. This reinforcement of the endothelial cells is what is known as the blood-brain barrier.
Although crucial to protecting the central nervous system, the blood-brain barrier also prevents drugs in the bloodstream from getting inside the brain to treat diseases, such as cancer. "Our research shows that blood vessel cells lacking Frizzled-4 are leaky. With this information in hand, we hope that someday it may be possible to temporarily loosen the blood-brain barrier, allowing life-saving drugs to pass through," says Nathans.
INFORMATION:
Other authors on the paper are Yanshu Wang, Amir Rattner, Yulian Zhou, John Williams and Philip Smallwood, all from the Johns Hopkins University School of Medicine.
This work was supported by grants from the National Eye Institute, the Howard Hughes Medical Institute, the Johns Hopkins Brain Science Institute, the Foundation Fighting Blindness, and the Ellison Medical Foundation.
On the Web:
Nathans Lab: http://neuroscience.jhu.edu/JeremyNathans.php
Media Relations and Public Affairs
Media Contacts: Catherine Kolf; 443-287-2251; ckolf@jhmi.edu
Vanessa McMains; 410-502-9410; vmcmain1@jhmi.edu
Shawna Williams; 410-955-8236; shawna@jhmi.edu
Research on blood vessel proteins holds promise for controlling 'blood-brain barrier'
Experiments also suggest approaches to treating blood vessel disorders in the eye
2012-12-06
ELSE PRESS RELEASES FROM THIS DATE:
Immune system kill switch could be target for chemotherapy and infection recovery
2012-12-06
Researchers have discovered an immune system 'kill switch' that destroys blood stem cells when the body is under severe stress, such as that induced by chemotherapy and systemic infections.
The discovery could have implications for protecting the blood system during chemotherapy or in diseases associated with overwhelming infection, such as sepsis.
The kill switch is triggered when internal immune cell signals that protect the body from infection go haywire. Dr Seth Masters, Dr Motti Gerlic, Dr Benjamin Kile and Dr Ben Croker from the Walter and Eliza Hall Institute ...
Nobody's perfect
2012-12-06
Researchers at Cambridge and Cardiff have found that, on average, a normal healthy person carries approximately 400 potentially damaging DNA variants and two variants known to be associated directly with disease traits. They showed that one in ten people studied is expected to develop a genetic disease as a consequence of carrying these variants.
It has been known for decades that all people carry some damaging genetic variants that appear to cause little or no ill effect. But this is the first time that researchers have been able to quantify how many such variants each ...
Overestimation of abortion deaths in Mexico hinders maternal mortality reduction efforts
2012-12-06
This press release is available in Spanish and Portuguese.
A collaborative study conducted in Mexico by researchers of the University of West Virginia-Charleston (USA), Universidad Popular Autónoma del Estado de Puebla (Mexico), Universidad de Chile and the Institute of Molecular Epidemiology of the Universidad Católica de la Santísima Concepción (Chile), revealed that IPAS-Mexico overestimated rates of maternal and abortion mortality up to 35% over the last two decades. The research, recently published in the International Journal of Women's Health highlights that Mexico ...
Researchers discover regulator linking exercise to bigger, stronger muscles
2012-12-06
BOSTON - Scientists at Dana-Farber Cancer Institute have isolated a previously unknown protein in muscles that spurs their growth and increased power following resistance exercise. They suggest that artificially raising the protein's levels might someday help prevent muscle loss caused by cancer, prolonged inactivity in hospital patients, and aging.
Mice given extra doses of the protein gained muscle mass and strength, and rodents with cancer were much less affected by cachexia, the loss of muscle that often occurs in cancer patients, according to the report in the Dec. ...
A relationship between cancer genes and the reprogramming gene SOX2 discovered
2012-12-06
A team of researchers from the Spanish National Cancer Research Centre (CNIO), led by Manuel Serrano, from the Tumour Suppression Group, together with scientists from London and Santiago de Compostela, has discovered that the cellular reprogramming gene SOX2, which is involved in several types of cancers, such as lung cancer and pituitary cancer, is directly regulated by the tumor suppressor CDKN1B(p27) gene, which is also associated with these types of cancer.
The same edition of the online version of the journal also includes a study led by Massimo Squatrito, who recently ...
Study IDs gene that turns carbs into fat
2012-12-06
Berkeley — A gene that helps the body convert that big plate of holiday cookies you just polished off into fat could provide a new target for potential treatments for fatty liver disease, diabetes and obesity.
Researchers at the University of California, Berkeley, are unlocking the molecular mechanisms of how our body converts dietary carbohydrates into fat, and as part of that research, they found that a gene with the catchy name BAF60c contributes to fatty liver, or steatosis.
In the study, to be published online Dec. 6 in the journal Molecular Cell, the researchers ...
ACNP: Novel NMDA receptor modulator significantly reduces depression scores within hours
2012-12-06
HOLLYWOOD, FL and EVANSTON, IL, December 6, 2012 -- Naurex Inc., a clinical stage company developing innovative treatments to address unmet needs in psychiatry and neurology, today reported positive results from a Phase IIa clinical trial of its lead antidepressant compound, GLYX-13. GLYX-13 is a novel partial agonist of the NMDA receptor. The Phase Ila results are being presented this week at the 51st Annual Meeting of the American College of Neuropsychopharmacology (ACNP).
The Phase IIa results show that a single administration of GLYX-13 produced statistically significant ...
Research yields understanding of Darwin's 'abominable mystery'
2012-12-06
Research by Indiana University paleobotanist David L. Dilcher and colleagues in Europe sheds new light on what Charles Darwin famously called "an abominable mystery": the apparently sudden appearance and rapid spread of flowering plants in the fossil record.
Writing in the Proceedings of the National Academy of Sciences, the researchers present a scenario in which flowering plants, or angiosperms, evolved and colonized various types of aquatic environments over about 45 million years in the early to middle Cretaceous Period.
Dilcher is professor emeritus at IU Bloomington ...
Environmental chemical blocks cell function
2012-12-06
Bisphenol A, a substance found in many synthetic products, is considered to be harmful, particularly, for fetuses and babies. Researchers from the University of Bonn have now shown in experiments on cells from human and mouse tissue that this environmental chemical blocks calcium channels in cell membranes. Similar effects are elicited by drugs used to treat high blood pressure and cardiac arrhythmia. The results are now presented in the journal "Molecular Pharmacology."
The industrial chemical bisphenol A (BPA) is worldwide extensively utilized for manufacturing polycarbonates ...
New evidence for epigenetic effects of diet on healthy aging
2012-12-06
New research in human volunteers has shown that molecular changes to our genes, known as epigenetic marks, are driven mainly by ageing but are also affected by what we eat.
The study showed that whilst age had the biggest effects on these molecular changes, selenium and vitamin D status reduced the accumulation of epigenetic changes, and high blood folate and obesity increased them. These findings support the idea that healthy ageing is affected by what we eat.
Researchers from the Institute of Food Research led by Dr Nigel Belshaw, working with Prof John Mathers and ...
LAST 30 PRESS RELEASES:
Perovskite solar cells: Thermal stresses are the key to long-term stability
University of Houston professors named senior members of the National Academy of Inventors
Unraveling the mystery of the missing blue whale calves
UTA partnership boosts biomanufacturing in North Texas
Kennesaw State researcher earns American Heart Association award for innovative study on heart disease diagnostics
Self-imaging of structured light in new dimensions
Study highlights successes of Virginia’s oyster restoration efforts
Optimism can encourage healthy habits
Precision therapy with microbubbles
LLM-based web application scanner recognizes tasks and workflows
Pattern of compounds in blood may indicate severity of gestational hypertension and preeclampsia
How does innovation policy respond to the challenges of a changing world?
What happens when a diet targets ultra-processed foods?
University of Vaasa, Finland, conducts research on utilizing buildings as energy sources
Stealth virus: Zika virus builds tunnels to covertly infect cells of the placenta
The rising tide of sand mining: a growing threat to marine life
Contemporary patterns of end-of-life care among Medicare beneficiaries with advanced cancer
Digital screen time and nearsightedness
Postoperative weight loss after anti-obesity medications and revision risk after joint replacement
New ACS research finds low uptake of supportive care at the end-of-life for patients with advanced cancer
New frailty measurement tool could help identify vulnerable older adults in epic
Co-prescribed stimulants, opioids linked to higher opioid doses
What if we could revive waste carbon dioxide?
Mechanochemistry strikes again – A facile means for generating organolithium molecules
Breakthrough in high-performance oxide-ion conductors using rubidium
Hurricane-proofed downtown skyscrapers unexpectedly vulnerable to ‘bouncing’ winds
Microcomb chips help pave the way for thousand times more accurate GPS systems
Illuminating the proton’s inner workings
Genetic therapy gives infants life-changing improvements in sight
Impacts of workplace bullying on sleep can be “contagious” between partners
[Press-News.org] Research on blood vessel proteins holds promise for controlling 'blood-brain barrier'Experiments also suggest approaches to treating blood vessel disorders in the eye