(Press-News.org) Columbus, Ohio (Oct. 14, 2010) – An Ohio State University astronomer is working to unlock some of the mysteries surrounding the formation of vast galaxies and the evolution of massive black holes with his own large constellation of silicon wafers.
Over the last year, two research teams led by Stelios Kazantzidis, a Long-Term Fellow at the Center for Cosmology and Astro-Particle Physics (CCAPP) at The Ohio State University, have used what would average out to nearly 1,000 computing hours each day on the parallel high performance computing systems of the Ohio Supercomputer Center (OSC). To develop their detailed models and resulting simulations, Kazantzidis and his colleagues tapped OSC's flagship system, the Glenn IBM Cluster 1350, which features more than 9,600 Opteron cores and 24 terabytes of memory.
Kazantzidis and University of Zurich student Simone Callegari recently authored a paper, "Growing Massive Black Hole Pairs in Minor Mergers of Disk Galaxies," and submitted it for publication in the Astrophysical Journal. Their study involved a suite of high-resolution, smoothed-particle hydrodynamics simulations of merging disk galaxies with supermassive black holes (SMBHs). These simulations include the effects of star formation and growth of the SMBHs, as well as feedback from both processes.
"Binary SMBHs are very important, because once they form there is always the possibility that the two black holes may subsequently merge," Kazantzidis explained. "Merging SMBHs will produce the strongest signal of gravitational wave emission in the universe. Gravitational waves have not yet been directly detected, although Einstein predicted them in his Theory of General Relativity."
The astronomers found that the mass ratios of SMBH pairs in the centers of merged galaxies do not necessarily relate directly to the ratios they had to their original host galaxies, but are "a consequence of the complex interplay between accretion of matter (stars and gas) onto them and the dynamics of the merger process." As a result, one of the two SMBHs can grow in mass much faster than the other.
Kazantzidis believes simulations of the formation of binary SMBHs have the potential to open a new window into astrophysical and physical phenomena that cannot be studied in other ways and might help to verify general relativity, one of the most fundamental theories of physics.
Kazantzidis and his colleagues also recently developed sophisticated computer models to simulate the formation of dwarf spheroidal galaxies, which are satellites of our own galaxy, the Milky Way. The study concluded that, in a majority of cases, disk-like dwarf galaxies – known in the field as disky dwarfs – experience significant loss of mass as they orbit inside their massive hosts, and their stellar distributions undergo a dramatic morphological, as well as dynamical, transformation: from disks to spheroidal systems.
"These galaxies are very important for astrophysics, because they are the most dark matter-dominated galaxies in the universe," Kazantzidis said. "Understanding their formation can shed light into the very nature of dark matter. Environmental processes like the interactions between dwarf galaxies and their massive hosts we've been investigating should be included as ingredients in future models of dwarf galaxy formation and evolution."
For this project, Kazantzidis, Callegari, Ewa Lokas of the Nicolaus Copernicus Astronomical Center – all of whom utilized the Glenn Cluster – and the rest of the team have submitted to the Astrophysical Journal an article titled, "On the Efficiency of the Tidal Stirring Mechanism for the Origin of Dwarf Spheroidals: Dependence on the Orbital and Structural Parameters of the Progenitor Disky Dwarfs."
Supercomputing centers such as OSC allow astronomers to create extremely sophisticated models that are not feasible on desktop systems. However, even with supercomputers, Kazantzidis and his colleagues find that simulating the multitude of elements involved in these galactic processes remains an enormous challenge.
"Our models can only follow a small subset of, say, the stars in a galaxy," he explained. "For example, a galaxy like our Milky Way contains hundreds of billions of stars, and even the most sophisticated numerical simulations to date can only simulate a tiny fraction of this number. The situation becomes increasingly more difficult in simulations that involve dark matter. This is because the dark matter particle is an elementary particle and, therefore, it is much less massive than a star. A galaxy like the Milky Way contains of the order of 1067 dark matter particles (that is, the number one followed by 67 zeros)."
The goal of Kazantzidis' team is to develop representations of galaxies that are as accurate as possible. Access to the Glenn Cluster increases the number of objects (or simulation particles) that can be depicted in the model, enhancing their ability to perform accurate and meaningful calculations.
"The powerful hardware and software available at OSC are particularly well-suited for cutting-edge astronomy research, such as that being conducted by Dr. Kazantzidis," said Ashok Krishnamurthy, interim co-executive director and director of research at OSC. "The results he and his colleagues have been able to achieve through their research projects are impressive and firmly demonstrate the Center's ability to help accelerate innovation and discovery."
INFORMATION:
These projects were funded by CCAPP, the Swiss National Science Foundation, the Polish Ministry of Science and Higher Education, and by an allocation of computing time from OSC.
The Ohio Supercomputer Center (OSC) is a catalytic partner of Ohio universities and industries, providing a reliable high performance computing and high performance networking infrastructure for a diverse statewide/regional community including education, academic research, industry, and state government. Funded by the Ohio Board of Regents, OSC promotes and stimulates computational research and education in order to act as a key enabler for the state's aspirations in advanced technology, information systems, and advanced industries. For more, visit www.osc.edu.
The Center for Cosmology and Astro-Particle Physics (CCAPP) at The Ohio State University builds on the unique relationship between the OSU Departments of Astronomy and Physics to pursue research at the interface of cosmology, astrophysics, and high energy physics. CCAPP research initiatives include dark energy (DES-LSST-SNAP), "multi-messenger" astro-particle physics (GLAST,AUGER,ANITA), dark matter, and the birth and growth of the Universe. For more, visit ccapp.mps.ohio-state.edu .
Astronomer leverages supercomputers to study black holes, galaxies
OSU's Kazantzidis studies cosmological phenomena through modeling and simulation at the Ohio Supercomputer Center
2010-10-15
ELSE PRESS RELEASES FROM THIS DATE:
UCSB physicists detect and control quantum states in diamond with light
2010-10-15
(Santa Barbara, Calif.) –– Physicists at UC Santa Barbara have succeeded in combining laser light with trapped electrons to detect and control the electrons' fragile quantum state without erasing it. This is an important step toward using quantum physics to expand computing power and to communicate over long distances without the possibility of eavesdropping. The work appears online today at Science Express.
The research, led by David Awschalom, professor of physics, electrical and computer engineering, and director of UCSB's Center for Spintronics and Quantum Computation, ...
Young children are especially trusting of things they're told
2010-10-15
Little kids believe the darnedest things. For example, that a fat man in a red suit flies through the air on a sleigh pulled by reindeer. A new study on three-year-olds, published in Psychological Science, a journal of the Association for Psychological Science, finds that they aren't just generally trusting. They're particularly trusting of things people say to them.
Previous research has found that three-year-olds are a credulous bunch; they believe most things they're told, and skepticism doesn't kick in until later. Vikram K. Jaswal, of the University of Virginia, ...
Gene identified that prevents stem cells from turning cancerous
2010-10-15
Stem cells, the prodigious precursors of all the tissues in our body, can make almost anything, given the right circumstances. Including, unfortunately, cancer. Now research from Rockefeller University shows that having too many stem cells, or stem cells that live for too long, can increase the odds of developing cancer. By identifying a mechanism that regulates programmed cell death in precursor cells for blood, or hematopoietic stem cells, the work is the first to connect the death of such cells to a later susceptibility to tumors in mice. It also provides evidence of ...
Low beta blocker dose can put patients at risk for subsequent heart attacks
2010-10-15
CHICAGO –For nearly 40 years a class of drugs known as beta blockers have been proven to increase patients' survival prospects following a heart attack by decreasing the cardiac workload and oxygen demand on the heart. In a breakthrough study released in the American Heart Journal, Northwestern Medicine cardiologist Jeffrey J. Goldberger found the majority of patients are frequently not receiving a large enough dose of these drugs, which can put their recovery from heart attacks and overall health into peril.
"Only 46% of patients studied were taking 50% or more of the ...
Carbon dioxide controls Earth's temperature
2010-10-15
NEW YORK -- Water vapor and clouds are the major contributors to Earth's greenhouse effect, but a new atmosphere-ocean climate modeling study shows that the planet's temperature ultimately depends on the atmospheric level of carbon dioxide.
The study, conducted by Andrew Lacis and colleagues at NASA's Goddard Institute for Space Studies (GISS) in New York, examined the nature of Earth's greenhouse effect and clarified the role that greenhouse gases and clouds play in absorbing outgoing infrared radiation. Notably, the team identified non-condensing greenhouse gases -- ...
The risks and benefits of using poplars for biofuels
2010-10-15
A potential solution for global energy demands is the use of Poplar, a fast-growing tree with high yields, for biofuels. To get the most out of Poplar plantations, varieties that are the best fit for the conditions—ones with disease resistance or higher yields, for example—are desired. But do these plantations of new, non-native (exotic) species impact nearby native populations of Poplar? In particular, is the genetic makeup of the native populations being altered by interactions with the exotic species?
In the October issue of the American Journal of Botany (http://www.amjbot.org/cgi/reprint/97/10/1688), ...
Humidity makes gecko feet stickier
2010-10-15
Human adhesives are famed for their fallibility. Gooey glues soon lose their grip, are easily contaminated and leave residues behind. But not gecko feet. Geckos can cling on repeatedly to the smoothest surfaces thanks to the self-cleaning microscopic spatula-shaped hairs (setae) that coat the soles of their feet. Back in 2002, Kellar Autumn found that these dry hairs are in such intimate contact with surfaces that the reptiles 'glue' themselves on by van der Waals forces with no need for fluid adhesives. More recent studies had suggested that geckos might benefit from additional ...
Study finds a high rate of restless legs syndrome in adults with fibromyalgia
2010-10-15
DARIEN, IL – A study in the Oct. 15 issue of the Journal of Clinical Sleep Medicine found that adults with fibromyalgia had a much higher prevalence and risk of restless legs syndrome than healthy controls. The study suggests that treating RLS may improve sleep and quality of life in people with fibromyalgia.
Results show that the prevalence of restless legs syndrome was about 10 times higher in the fibromyalgia group (33 percent) than among controls (3.1 percent). After statistical adjustments for potential confounders such as age, gender and ethnicity, participants ...
BeMo - Project Intelligence Unlocks the Full Power of Microsoft Project Server 2010
2010-10-15
This week's PMI (Project Management Institute) Global Congress 2010 in Washington DC marked the official launch of BeMo - Project Intelligence, a specialized online marketplace for Enterprise Project Management (EPM) solutions and related services. BeMo founders Bruno Lecoq and Joel Lachance have created the business to help individuals or companies of any size, manage any and all of their projects online - quickly and easily.
While a few key players like ProjectHosts, EPM Live are already in the burgeoning Microsoft Project Server 2010 hosting market, the BeMo - Project ...
My911 SmartPhone App Revolutionizes Bicycle Riding
2010-10-15
My911, a SmartPhone application, has recently been marketed to bicyclists, offering them additional safety when things go bad. The app utilizes both the accelerometer and GPS technologies in order to automatically notify an ambulance when the user gets into an accident. One user claimed the app is "like having OnStar on your bike". The GPS location is given to the ambulance, allowing help to come quickly, without requiring any description of where the accident occurred.
If you were biking in the mountains or in some national park, how long would it take to describe to ...
LAST 30 PRESS RELEASES:
Are we ready for the ethical challenges of AI and robots?
Nanotechnology: Light enables an "impossibile" molecular fit
Estimated vaccine effectiveness for pediatric patients with severe influenza
Changes to the US preventive services task force screening guidelines and incidence of breast cancer
Urgent action needed to protect the Parma wallaby
Societal inequality linked to reduced brain health in aging and dementia
Singles differ in personality traits and life satisfaction compared to partnered people
President Biden signs bipartisan HEARTS Act into law
Advanced DNA storage: Cheng Zhang and Long Qian’s team introduce epi-bit method in Nature
New hope for male infertility: PKU researchers discover key mechanism in Klinefelter syndrome
Room-temperature non-volatile optical manipulation of polar order in a charge density wave
Coupled decline in ocean pH and carbonate saturation during the Palaeocene–Eocene Thermal Maximum
Unlocking the Future of Superconductors in non-van-der Waals 2D Polymers
Starlight to sight: Breakthrough in short-wave infrared detection
Land use changes and China’s carbon sequestration potential
PKU scientists reveals phenological divergence between plants and animals under climate change
Aerobic exercise and weight loss in adults
Persistent short sleep duration from pregnancy to 2 to 7 years after delivery and metabolic health
Kidney function decline after COVID-19 infection
Investigation uncovers poor quality of dental coverage under Medicare Advantage
Cooking sulfur-containing vegetables can promote the formation of trans-fatty acids
How do monkeys recognize snakes so fast?
Revolutionizing stent surgery for cardiovascular diseases with laser patterning technology
Fish-friendly dentistry: New method makes oral research non-lethal
Call for papers: 14th Asia-Pacific Conference on Transportation and the Environment (APTE 2025)
A novel disturbance rejection optimal guidance method for enhancing precision landing performance of reusable rockets
New scan method unveils lung function secrets
Searching for hidden medieval stories from the island of the Sagas
Breakthrough study reveals bumetanide treatment restores early social communication in fragile X syndrome mouse model
Neuroscience leader reveals oxytocin's crucial role beyond the 'love hormone' label
[Press-News.org] Astronomer leverages supercomputers to study black holes, galaxiesOSU's Kazantzidis studies cosmological phenomena through modeling and simulation at the Ohio Supercomputer Center