(Press-News.org) Rose madder – a natural plant dye once prized throughout the Old World to make fiery red textiles – has found a second life as the basis for a new "green" battery.
Chemists from The City College of New York teamed with researchers from Rice University and the U.S. Army Research Laboratory to develop a non-toxic and sustainable lithium-ion battery powered by purpurin, a dye extracted from the roots of the madder plant (Rubia species).
More than 3500 years ago, civilizations in Asia and the Middle East first boiled madder roots to color fabrics in vivid oranges, reds and pinks. In its latest technological incarnation, the climbing herb could lay the foundation for an eco-friendly alternative to traditional lithium-ion (Li-ion) batteries. These batteries charge everything from your mobile phone to electric vehicles, but carry with them risks to the environment during production, recycling and disposal.
"Purpurin," on the other hand, said team member and City College Professor of Chemistry George John, "comes from nature and it will go back to nature." The team reports their results in the journal Nature's online and open access publication, Scientific Reports, on December 11, 2012.
Most Li-ion batteries today rely on finite supplies of mined metal ores, such as cobalt. "Thirty percent of globally produced cobalt is fed into battery technology," noted Dr. Leela Reddy, lead author and a research scientist in Professor Ajayan's lab in the Department of Mechanical Engineering and Material Science at Rice University. The cobalt salt and lithium are combined at high temperatures to make a battery's cathode, the electrode through which the electric current flows.
Mining cobalt metal and transforming it, however, is expensive, he explained. Fabricating and recycling standard Li-ion batteries demands high temperatures, guzzling costly energy, especially during recycling. "In 2010, almost 10 billion lithium-ion batteries had to be recycled," said Dr. Reddy.
Production and recycling also pumps an estimated 72 kilograms of carbon dioxide – a greenhouse gas – into the atmosphere for every kilowatt-hour of energy in a Li-ion battery, he noted. These grim facts have fed a surging demand to develop green batteries, said Dr. Reddy.
Fortunately, biologically based color molecules, like purpurin and its relatives, seem pre-adapted to act as a battery's electrode. In the case of purpurin, the molecule's six-membered (aromatic) rings are festooned with carbonyl and hydroxyl groups adept at passing electrons back and forth, just as traditional electrodes do. "These aromatic systems are electron-rich molecules that easily coordinate with lithium," explained Professor John.
Moreover, growing madder or other biomass crops to make batteries would soak up carbon dioxide and eliminate the disposal problem – without its toxic components, a lithium-ion battery could be thrown away.
Best of all, purpurin also turns out to be a no-fuss ingredient. "In the literature there are one or two other natural organic molecules in development for batteries, but the process to make them is much more tedious and complicated," noted Professor John.
Made and stored at room temperature, the purpurin electrode is made in just a few easy steps: dissolve the purpurin in an alcohol solvent and add lithium salt. When the salt's lithium ion binds with purpurin the solution turns from reddish yellow to pink. "The chemistry is quite simple," coauthor and City College postdoctoral researcher Dr. Nagarajan explained.
The team estimates that a commercial green Li-ion battery may be only a few years away, counting the time needed to ramp up purpurin's efficiency or hunt down and synthesize similar molecules. "We can say it is definitely going to happen, and sometime soon, because in this case we are fully aware of the mechanism," said Professor John.
"When you can generate something new or unheard of, you think of chemistry in a different way," he added. "That a natural material or dye can be used for a battery, that is exciting, even for me."
INFORMATION:
Co-authors include postdoctoral researcher Subbiah Nagarajan, facilities manager Padmanava Pradhan, and graduate student Swapnil Jadhav of the City College of New York; visiting scholar Porramate Chumyim, former postdoctoral fellow Sanketh Gowda and Professor Pulickel Ajayan of Rice University; and Madan Dubey of the U.S. Army Research Laboratory.
The National Science Foundation and the Army Research Office funded this research.
Reference:
Reddy, A.L.M. et al. Lithium storage mechanisms in purpurin based
organic lithium ion battery electrodes. Sci. Rep. 2, 960; doi:10.1038/srep00960
11 Dec 2012.
http://www.nature.com/srep/2012/121211/srep00960/full/srep00960.html
Online:
Professor George John
Rice University Ajayan Lab (Incl. L. Reddy)
Ancient red dye powers new 'green' battery
CCNY chemists use rose madder in eco-friendly, sustainable lithium-ion battery
2012-12-12
ELSE PRESS RELEASES FROM THIS DATE:
Kentucky team inhibits Alzheimer's biomarkers in animal model by targeting astrocytes
2012-12-12
LEXINGTON, Ky. (Dec. 10, 2012) — A research team composed of University of Kentucky researchers has published a paper which provides the first direct evidence that activated astrocytes could play a harmful role in Alzheimer's disease. The UK Sanders-Brown Center on Aging has also received significant new National Institutes of Health (NIH) funding to further this line of study.
Chris Norris, an associate professor in the UK College of Medicine Department of Molecular and Biomedical Pharmacology, as well as a member of the faculty at the UK Sanders-Brown Center on Aging, ...
What causes hot flushes during menopause?
2012-12-12
Hot flushes affect millions of people, and not just women. Yet, it is still unclear what causes the episodes of temperature discomfort, often accompanied by profuse sweating.
Now a team of researchers around Dr. Naomi Rance, a professor in the department of pathology at the UA College of Medicine, has come closer to understanding the mechanism of hot flushes, a necessary step for potential treatment options down the road. This research was published recently in the Proceedings of the National Academy of Sciences.
The team identified a group of brain cells known as KNDy ...
Rice cultivates green batteries from plant
2012-12-12
HOUSTON – (Dec. 11, 2012) – Here's a reason to be glad about madder: The climbing plant has the potential to make a greener rechargeable battery.
Scientists at Rice University and the City College of New York have discovered that the madder plant, aka Rubia tinctorum, is a good source of purpurin, an organic dye that can be turned into a highly effective, natural cathode for lithium-ion batteries. The plant has been used since ancient times to create dye for fabrics.
The discovery is the subject of a paper that appears today in Nature's online, open-access journal ...
My, what big teeth you have! Threatening objects appear closer
2012-12-12
When we're faced with things that seem threatening, whether it's a hairy spider or an angry mob, our goal is usually to get as far away as we can. Now, new research suggests that our visual perception may actually be biased to help motivate us to get out of harm's way.
When we're faced with a threat our bodies respond in ways that engage our fight-or-flight response and enable us to act quickly: Our heart rate and blood pressure ramp up, and we produce more of the stress hormone cortisol. But research suggests that the body may also demonstrate its preparedness through ...
Capturing circulating cancer cells could provide insights into how disease spreads
2012-12-12
ANN ARBOR—A glass plate with a nanoscale roughness could be a simple way for scientists to capture and study the circulating tumor cells that carry cancer around the body through the bloodstream.
Engineering and medical researchers at the University of Michigan have devised such a set-up, which they say takes advantage of cancer cells' stronger drive to settle and bind compared with normal blood cells.
Circulating tumor cells are believed to contribute to cancer metastasis, the grim process of the disease spreading from its original site to distant tissues. Blood tests ...
How our sense of touch is a lot like the way we hear
2012-12-12
When you walk into a darkened room, your first instinct is to feel around for a light switch. You slide your hand along the wall, feeling the transition from the doorframe to the painted drywall, and then up and down until you find the metal or plastic plate of the switch. During the process you use your sense of touch to develop an image in your mind of the wall's surface and make a better guess for where the switch is.
Sliman Bensmaia, PhD, assistant professor of organismal biology and anatomy at the University of Chicago, studies the neural basis of tactile perception, ...
Mussel goo inspires blood vessel glue
2012-12-12
A University of British Columbia researcher has helped create a gel – based on the mussel's knack for clinging to rocks, piers and boat hulls – that can be painted onto the walls of blood vessels and stay put, forming a protective barrier with potentially life-saving implications.
Co-invented by Assistant Professor Christian Kastrup while a postdoctoral student at the Massachusetts Institute of Technology, the gel is similar to the amino acid that enables mussels to resist the power of churning water. The variant that Kastrup and his collaborators created, described in ...
An older Vega: New insights about the star all others are measured by
2012-12-12
ANN ARBOR—Vega, a star astronomers have used as a touchstone to measure other stars' brightness for thousands of years, may be more than 200 million years older than previously thought. That's according to new findings from the University of Michigan.
The researchers estimated Vega's age by precisely measuring its spin speed with a tool called the Michigan Infrared Combiner, developed by John Monnier, associate professor of astronomy in U-M's College of Literature, Science, and the Arts.
MIRC collects the light gathered by six telescopes to make it appear to be coming ...
NASA's EUNIS mission: 6 minutes in the life of the sun
2012-12-12
In December, a NASA mission to study the sun will make its third launch into space for a six-minute flight to gather information about the way material roils through the sun's atmosphere, sometimes causing eruptions and ejections that travel as far as Earth. The launch of the EUNIS mission, short for Extreme Ultraviolet Normal Incidence Spectrograph, is scheduled for Dec. 15, 2012, from White Sands, N.M. aboard a Black Brant IX rocket. During its journey, EUNIS will gather a new snapshot of data every 1.2 seconds to track the way material of different temperatures flows ...
Fear of falling may cause social isolation in older adults with vision problems
2012-12-12
Rockville, Md. — A new study published in Investigative Ophthalmology & Visual Science found that between 40 to 50 percent of older adults with visually impairing eye disease limit their activities due to a fear of falling. Vision scientists warn that this protective strategy puts seniors at risk for social isolation and disability.
In the paper, "Activity Limitation Due to a Fear of Falling in Older Adults with Eye Disease," researchers report on their examination of patients with age-related macular degeneration (AMD), glaucoma and Fuchs corneal dystrophy, as compared ...
LAST 30 PRESS RELEASES:
Tracing gas adsorption on “crowns” of platinum and gold connected by nanotunnels
Rare bird skull from the age of dinosaurs helps illuminate avian evolution
Researchers find high levels of the industrial chemical BTMPS in fentanyl
Decoding fat tissue
Solar and electric-powered homes feel the effects of blackouts differently, according to new research from Stevens
Metal ion implantation and laser direct writing dance together: constructing never-fading physical colors on lithium niobate crystals
High-frequency enhanced ultrafast compressed photography technology (H-CAP) allows microscopic ultrafast movie to appear at a glance
Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
Removing large brain artery clot, chased with clot-buster shot may improve stroke outcomes
A highly sensitive laser gas sensor based on a four-prong quartz tuning fork
Generation of Terahertz complex vector light fields on a metasurface driven by surface waves
Clot-busting meds may be effective up to 24 hours after initial stroke symptoms
Texas Tech Lab plays key role in potential new pathway to fight viruses
Multi-photon bionic skin realizes high-precision haptic visualization for reconstructive perception
Mitochondria may hold the key to curing diabetes
Researchers explore ketogenic diet’s effects on bipolar disorder among teenagers, young adults
From muscle to memory: new research uses clues from the body to understand signaling in the brain
New study uncovers key differences in allosteric regulation of cAMP receptor proteins in bacteria
Co-located cell types help drive aggressive brain tumors
Social media's double-edged sword: New study links both active and passive use to rising loneliness
An unexpected mechanism regulates the immune response during parasitic infections
Scientists enhance understanding of dinoflagellate cyst dormancy
PREPSOIL promotes soil literacy through education
nTIDE February 2025 Jobs Report: Labor force participation rate for people with disabilities hits an all-time high
Temperamental stars are distorting our view of distant planets
DOE’s Office of Science is now Accepting Applications for Office of Science Graduate Student Research Awards
Twenty years on, biodiversity struggles to take root in restored wetlands
Do embedded counseling services in veterinary education work? A new study says “yes.”
Discovery of unexpected collagen structure could ‘reshape biomedical research’
Changes in US primary care access and capabilities during the COVID-19 pandemic
[Press-News.org] Ancient red dye powers new 'green' batteryCCNY chemists use rose madder in eco-friendly, sustainable lithium-ion battery