(Press-News.org) This press release is available in German.
Trees do not grow in the deep sea, nevertheless sunken pieces of wood can develop into oases for deep-sea life - at least temporarily until the wood is fully degraded. A team of Max Planck researchers from Germany now showed how sunken wood can develop into attractive habitats for a variety of microorganisms and invertebrates. By using underwater robot technology, they confirmed their hypothesis that animals from hot and cold seeps would be attracted to the wood due to the activity of bacteria, which produce hydrogen sulfide during wood degradation.
Many of the animals thriving at hydrothermal vents and cold seeps require special forms of energy such as methane and hydrogen sulfide emerging from the ocean floor. They carry bacterial symbionts in their body, which convert the energy from these compounds into food. The vents and seeps are often separated by hundreds of kilometers of deep-sea desert, with no connection between them.
For a long time it was an unsolved mystery how animals can disperse between those rare oases of energy in the deep sea. One hypothesis was that sunken whale carcasses, large dead algae, and also sunken woods could serve as food source and temporary habitat for deep-sea animals, but only if bacteria were able to produce methane and sulfur compounds from it.
To tackle this question, the team deposited wood logs on the Eastern Mediterranean seafloor at depths of 1700 meters and returned after one year to study the fauna, bacteria, and chemical microgradients.
"We were surprised how many animals had populated the wood already after one year. The main colonizers were wood-boring bivalves of the genus Xylophaga, also named "shipworms" after their shallow-water counterparts. The wood-boring Xylophaga essentially constitute the vanguard and prepare the habitat for other followers," Bienhold said. „But they also need assistance from bacteria, namely to make use of the cellulose from the wood, which is difficult to digest."
The team of researchers observed that the wood-boring bivalves had cut large parts of the wood into smaller chips, which were further degraded by many other organisms. This activity led to the consumption of oxygen, enabling the production of hydrogen sulfide by sulfate-reducing microorganisms. And indeed, the researchers also found a mussel, which is typically only found at cold seeps or similar environments where it uses sulfur compounds as an energy source. "It is amazing to see how deep-sea bacteria can transform foreign substances such as wood to provide energy for cold-seep mussels on their journey through the deep ocean", said Antje Boetius, chief scientist of the expedition. Furthermore, the researchers discovered unknown species of deep-sea worms, which have been described by taxonomic experts in Germany and the USA. Thus, sunken woods do not only promote the dispersal of rare deep-sea animals, but also form hotspots of biodiversity at the deep seafloor.
INFORMATION:
Original publication:
Bienhold C, Pop Ristova P, Wenzhöfer F, Dittmar T, Boetius A (2013)
How Deep-Sea Wood Falls Sustain Chemosynthetic Life.
PLoS ONE 8(1): e53590 doi:10.1371/journal.pone.0053590
Wood on the seafloor -- an oasis for deep-sea life
Sunken woods promote the dispersal of rare deep-sea animals, forming hotspots of biodiversity at the deep seafloor
2013-01-23
ELSE PRESS RELEASES FROM THIS DATE:
Vitamin D holds promise in battling a deadly breast cancer, Saint Louis University researchers say
2013-01-23
ST. LOUIS -- In research published in the Jan. 21 issue of The Journal of Cell Biology, a team led by Susana Gonzalo, Ph.D., assistant professor of biochemistry and molecular biology at Saint Louis University, has discovered a molecular pathway that contributes to triple-negative breast cancer, an often deadly and treatment resistant form of cancer that tends to strike younger women. In addition, Gonzalo and her team identified vitamin D and some protease inhibitors as possible new therapies and discovered a set of three biomarkers that can help to identify patients who ...
In the land of the free, interdependence undermines Americans' motivation to act
2013-01-23
Public campaigns that call upon people to think and act interdependently may undermine motivation for many Americans, according to new research published in Psychological Science, a journal of the Association for Psychological Science.
Americans are repeatedly exposed to messages urging them to think and act with others in mind, telling us, for example, to act sustainably by bringing reusable bags to the grocery store or to act responsibly by getting a flu shot. Researchers MarYam Hamedani, Hazel Rose Markus, and Alyssa Fu of Stanford University wondered what impact these ...
First global assessment of land and water 'grabbing' published in national journal
2013-01-23
As world food and energy demands grow, nations and some corporations increasingly are looking to acquire quality agricultural land for food production. Some nations are gaining land by buying up property – and accompanying water resources – in other, generally less wealthy countries.
Sometimes called "land grabbing," this practice can put strains on land and water resources in impoverished countries where the land, and needed water, has been "grabbed" for commercial-scale agriculture.
A new study by the University of Virginia and the Polytechnic University of Milan, ...
USDA studies confirm plant water demands shift with water availability
2013-01-23
WASHINGTON, January 22, 2012—Plants can adapt to extreme shifts in water availability, such as drought and flooding, but their ability to withstand these extreme patterns will be tested by future climate change, according to a study by U.S. Department of Agriculture (USDA) scientists and their cooperators.
The study was published this week in Nature by a team of Agricultural Research Service (ARS) scientists led by Guillermo Ponce Campos and Susan Moran and an Australian team led by Alfredo Huete from the University of Technology, Sydney (UTS). This research included ...
Just add water: How scientists are using silicon to produce hydrogen on demand
2013-01-23
BUFFALO, N.Y. — Super-small particles of silicon react with water to produce hydrogen almost instantaneously, according to University at Buffalo researchers.
In a series of experiments, the scientists created spherical silicon particles about 10 nanometers in diameter. When combined with water, these particles reacted to form silicic acid (a nontoxic byproduct) and hydrogen — a potential source of energy for fuel cells.
The reaction didn't require any light, heat or electricity, and also created hydrogen about 150 times faster than similar reactions using silicon particles ...
People seek high-calorie foods in tough times
2013-01-23
Bad news about the economy could cause you to pack on the pounds, according to a new study published in Psychological Science, a journal of the Association for Psychological Science.
The study shows that when there is a perception of tough times, people tend to seek higher-calorie foods that will keep them satisfied longer. When subconsciously primed with such messages, a "live for today" impulse is triggered causing people to consume nearly 40 percent more food than when compared to a control group primed with neutral words.
"The findings of this study come at a time ...
Genomic sequencing identifies mutant 'drivers' of common brain tumor
2013-01-23
BOSTON—Large-scale genomic sequencing has revealed two DNA mutations that appear to drive about 15 percent of brain tumors known as meningiomas, a finding that could lead to the first effective drug treatments for the tumors, report scientists from Dana-Farber Cancer Institute and the Broad Institute.
Surgery and radiation currently are the only treatments for meningiomas – slow-growing, often benign tumors that develop in the membranes surrounding the brain. Meningiomas can grow dangerously large, however, causing seizures and limb weakness, and occasionally are fatal. ...
Circadian rhythms can be modified for potential treatment of disorders
2013-01-23
Irvine, Calif., Jan. 22, 2013 — UC Irvine-led studies have revealed the cellular mechanism by which circadian rhythms – also known as the body clock – modify energy metabolism and also have identified novel compounds that control this action. The findings point to potential treatments for disorders triggered by circadian rhythm dysfunction, ranging from insomnia and obesity to diabetes and cancer.
UC Irvine's Paolo Sassone-Corsi, one of the world's leading researchers on the genetics of circadian rhythms, led the studies and worked with international groups of scientists. ...
Study: Viral reactivation a likely link between stress and heart disease
2013-01-23
COLUMBUS, Ohio – A new study could provide the link that scientists have been looking for to confirm that reactivation of a latent herpes virus is a cause of some heart problems.
Looking at blood samples from 299 heart patients, researchers at Ohio State University found that those who had suffered a heart attack were the most likely to have inflammatory proteins circulating in their blood compared to patients with less acute symptoms. And having more of one of these proteins in the blood was linked to the presence of antibodies that signal a latent Epstein-Barr virus ...
Scientists discover 'needle in a haystack' for muscular dystrophy patients
2013-01-23
Muscular dystrophy is caused by the largest human gene, a complex chemical leviathan that has confounded scientists for decades. Research conducted at the University of Missouri and described this month in the Proceedings of the National Academy of Sciences has identified significant sections of the gene that could provide hope to young patients and families.
MU scientists Dongsheng Duan, PhD, and Yi Lai, PhD, identified a sequence in the dystrophin gene that is essential for helping muscle tissues function, a breakthrough discovery that could lead to treatments for the ...
LAST 30 PRESS RELEASES:
Cryptographic protocol enables secure data sharing in the floating wind energy sector
Can drinking coffee or tea help prevent head and neck cancer?
Development of a global innovative drug in eye drop form for treating dry age-related macular degeneration
Scientists unlock secrets behind flowering of the king of fruits
Texas A&M researchers illuminate the mysteries of icy ocean worlds
Prosthetic material could help reduce infections from intravenous catheters
Can the heart heal itself? New study says it can
Microscopic discovery in cancer cells could have a big impact
Rice researchers take ‘significant leap forward’ with quantum simulation of molecular electron transfer
Breakthrough new material brings affordable, sustainable future within grasp
How everyday activities inside your home can generate energy
Inequality weakens local governance and public satisfaction, study finds
Uncovering key molecular factors behind malaria’s deadliest strain
UC Davis researchers help decode the cause of aggressive breast cancer in women of color
Researchers discovered replication hubs for human norovirus
SNU researchers develop the world’s most sensitive flexible strain sensor
Tiny, wireless antennas use light to monitor cellular communication
Neutrality has played a pivotal, but under-examined, role in international relations, new research shows
Study reveals right whales live 130 years — or more
Researchers reveal how human eyelashes promote water drainage
Pollinators most vulnerable to rising global temperatures are flies, study shows
DFG to fund eight new research units
Modern AI systems have achieved Turing's vision, but not exactly how he hoped
Quantum walk computing unlocks new potential in quantum science and technology
Construction materials and household items are a part of a long-term carbon sink called the “technosphere”
First demonstration of quantum teleportation over busy Internet cables
Disparities and gaps in breast cancer screening for women ages 40 to 49
US tobacco 21 policies and potential mortality reductions by state
AI-driven approach reveals hidden hazards of chemical mixtures in rivers
Older age linked to increased complications after breast reconstruction
[Press-News.org] Wood on the seafloor -- an oasis for deep-sea lifeSunken woods promote the dispersal of rare deep-sea animals, forming hotspots of biodiversity at the deep seafloor