PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

From grains of volcanic glass to continental rifting: New Geosphere articles now online

2013-02-12
(Press-News.org) Boulder, Colo., USA – New Geosphere articles posted online 11 Jan. and 5 Feb. 2013 include additions to the "Origin and Evolution of the Sierra Nevada and Walker Lane" series, the "Neogene Tectonics and Climate-Tectonic Interactions in the Southern Alaskan Orogen" series, and the "Crevolution 2: Origin and Evolution of the Colorado River System II" series. A new series is also introduced: "Results of IODP Exp313: The History and Impact of Sea-level Change Offshore New Jersey."

Papers cover: 1. Fresh water and the New Jersey shelf
2. Adobe Hills, California-Nevada, USA
3. Centimeter-scale analog models of continental rifts
4. The Organ magma complex
5. Textures of volcanic glass
6. The Hexi corridor basin, Tibetan Plateau
7. A comparison of the Seward-Malaspina and the Bagley-Bering-Tana glacier systems in Alaska
8. Two-dimensional models for the Border Ranges fault system, Alaska
9. New analytical techniques for understanding Grand Canyon
10. The value of different modalities in studying the Sierra Nevada

Abstracts for these and other Geosphere papers are available at http://geosphere.gsapubs.org/. Representatives of the media may obtain complimentary copies of Geosphere articles by contacting Kea Giles at the address above.

Please discuss articles of interest with the authors before publishing stories on their work, and please make reference to Geosphere in articles published. Contact Kea Giles for additional information or assistance.

Non-media requests for articles may be directed to GSA Sales and Service, gsaservice@geosociety.org.

Stable isotope geochemistry of pore waters and marine sediments from the New Jersey shelf: Methane formation and fluid origin
Robert van Geldern et al., GeoZentrum Nordbayern, University of Erlangen-Nuremberg, Schlossgarten 5, 91054 Erlangen, Germany. Posted online 11 Jan. 2013; now part of the Feb. 2013 issue; http://geosphere.gsapubs.org/content/9/1/96.abstract.

The presence of a large fresh water lens below the sea floor in the sediments of the New Jersey Shelf is known from early scientific drillings in the 1970s. However, the origin of this large freshwater body is still under debate. Recent groundwater flow models suggest that the water originates mainly from molten ice that entered the ground below large continental ice sheets during the last ice age. In this case, the potential resource of fresh water a few miles off the coast of New Jersey would be a non-renewable resource. In contrast to that, analyses of the pore waters that were sampled during the 2009 drilling expedition of the International Ocean Drilling Program (IODP Exp. 313) revealed the following sources of fluids beneath the shelf: (1) modern rainwater from onshore New Jersey, (2) modern seawater, and (3) a brine that ascends from deep sediments. This rules out the ice age origin theory. To investigate, Robert van Geldern and colleagues used the chemical composition of pore water and a naturally occurring label within the water molecule (H2O) -- the so-called "stable isotope composition" of the elements oxygen (O) and hydrogen (H). This ratio can be used to identify the origin and mixing of water masses. Further geochemical investigations of the sediment also revealed the existence of active methane formation in depths below 350 meters below the seafloor. Under today's sea level, this major greenhouse gas is not released from the sediment into the ocean or the atmosphere. The methane is oxidized in the sediment column to carbon dioxide that in turn is mostly trapped in the pore waters as dissolved inorganic carbon. This situation, however, could have been completely different during ice ages, where the sea level was much lower than today. Here, the methane could have vented out and contributed a significant portion of greenhouse gas into the atmosphere. This paper is part of a new "Results of IODP Exp313: The History and Impact of Sea-level Change Offshore New Jersey" series.

Pliocene sinistral slip across the Adobe Hills, eastern California-western Nevada: Kinematics of fault slip transfer across the Mina Deflection
Sarah Nagorsen-Rinke et al., Dept. of Geological Sciences, Central Washington University, Ellensburg, Washington 98926, USA. Posted online 11 Jan. 2013; now part of the February 2013 issue; http://geosphere.gsapubs.org/content/9/1/37.abstract.

The Adobe Hills, California-Nevada, USA, is a region of faulted volcanic rock located within what is called the Mina deflection, a zone of faults that connects the right-lateral fault slip dominated northern Eastern California shear zone (ECSZ) to the south with the right-lateral fault slip dominated Walker Lane belt (WLB) to the north. New geologic mapping, fault studies, and geochronology in the Adobe Hills allow researchers Sarah Nagorsen-Rinke and colleagues to calculate fault slip rates and test predictions for how fault slip is transferred from one fault system to another. Rocks exposed in the Adobe Hills include 11-million-year-old explosive volcanic rock overlain by three- to four-million-year-old (Pliocene age) sandstones, basalt lava flows, and basalt cinder cones, and younger (less than one-million-year-old) sands, alluvium, and mud. The authors propose that a set of faults located west of the White Mountains fault zone and east of Long Valley Caldera transfer a portion of right lateral Owens Valley fault slip northwestward onto the left lateral faults in the Adobe Hills. Fault slip in the Adobe Hills is part of a regional pattern of initiation and renewal of fault slip during the Pliocene that extends from latitude ~40 degrees N to ~36 degrees N within the ECSZ-WLB and along the western margin of the Basin and Range Province. This regional deformation episode may be related to changes in gravitational potential energy. This paper is part of the "Origin and Evolution of the Sierra Nevada and Walker Lane" series.

Experimental modeling of rifting at craton margins
Giacomo Corti et al., Consiglio Nazionale delle Ricerche (CNR), Istituto di Geoscienze e Georisorse, U.O. Firenze, Via G. La Pira, 4, 50121 Florence, Italy. Posted online 11 Jan. 2013; now part of the Feb. 2013 issue, http://geosphere.gsapubs.org/content/9/1/138.abstract.

Continental rifting is one of the most important geodynamic processes that shape our planet: During its evolution, lithospheric plates are torn apart and broken, and -- eventually -- a new oceanic basin is formed in between. Yet, the dynamics by which continental extension is progressively focused to form mid oceanic ridges is not well understood, especially when the process occurs at the margins of the strongest portions of the continents, the old cratonic areas. Continental rifts, such as the system of rift valleys in East Africa, Lake Baikal, or the basins that characterize large portion of the Antarctic plate, represent typical examples of these conditions, where the juxtaposition between the old, cold, and resistant lithosphere and an adjacent weaker domain is likely to influence the architecture and evolution of the extension-related deformation. In this study by Giacomo Corti and colleagues, centimeter-scale analog models are used to reproduce and analyze in the laboratory this large-scale geological process, providing results of important relevance for improving our knowledge of development of continental rifts at the margins of old, strong cratonic areas.

Geochronologic evidence of upper-crustal in situ differentiation: Silicic magmatism at the Organ caldera complex, New Mexico
Matthew J. Zimmerer and William C. McIntosh, Dept. of Earth and Environmental Science and New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, USA. First posted online 11 Jan. 2013; now part of the Feb. 2013 issue; http://geosphere.gsapubs.org/content/9/1/155.abstract.

Determining the processes that generate caldera-related silicic magmas and the origin of compositional zonation patterns of ignimbrites is central to our understanding of caldera-forming eruptions. Though the hazards associated with calderas are well known, caldera eruptions are infrequent and have not been directly observed. Because of this, most caldera magmatism models are developed using extinct caldera systems. In this study, Matthew Zimmerer and William McIntosh, conducted 40Ar/39Ar and laser ablation-inductively coupled plasma-mass spectrometry U/Pb zircon dating of the volcanic and plutonic rocks from the Organ caldera complex in order to accomplish two primary goals: (1) to investigate the time scales of caldera magmatism, from inception to cessation; and (2) to determine whether the caldera-forming silicic ignimbrites were generated by upper-crustal in situ differentiation or were generated at deeper crustal levels. This was accomplished by comparing the timing of caldera ignimbrite eruptions to the emplacement history of the Organ Needle pluton, the proposed residual crystal mush of the caldera magma chamber.

Atlas of Alteration Textures in Volcanic Glass from the Ocean Basins
Martin Fisk, College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97330, USA; and Nicola McLoughlin. First posted online 5 Feb. 2013; http://dx.doi.org/10.1130/GES00827.1.

Martin Fisk and Nicola McLoughlin provide a comprehensive photographic atlas of the intricate alteration features found in glass in igneous rocks from the ocean basins. These textures have previously been termed "bioalteration textures" or "etch pits." Fisk and McLoughlin use transmitted-light color photomicrographs to illustrate the range of granular and tubular textures as well as their relationship to fractures, minerals, vesicles, and multiple episodes of alteration in the same sample. They describe the tubular forms using seven morphological characteristics: (1) length and width; (2) density; (3) curvature; (4) roughness; (5) variations in width; (6) branching; and (7) tunnel contents. The photomicrographs are a starting point for understanding the factors that control the formation of the alteration textures, for evaluating the biogenicity of the various forms, for inferring subsurface conditions during alteration, and for making comparisons to similar textures in ancient ophiolites, some of which have been attributed to the earliest life on Earth.

Late Quaternary slip rates of the thrust faults in western Hexi Corridor (Northern Qilian Shan, China) and their implications for northeastward growth of the Tibetan Plateau
Zheng Wen-Jun et al., State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China. Posted online 5 Feb. 2013; http://dx.doi.org/10.1130/GES00775.1.

Based on 10Be exposure dating and topographic profiling, Zheng Wen-Jun and colleagues determined vertical components of slip rates for the Jiayuguan Fault and the Jintanan Shan Fault in the NE Tibetan Plateau. They found that the rates are consistent with previous geological and GPS constraints, and conclude that the Tibetan Plateau continues to grow northeastward by thrust faulting at low rates and by folding on the northeastern edge of the Hexi Corridor basin.

Examination of the interplay between glacial processes and exhumation in the Saint Elias Mountains, Alaska
Rachel M. Headley et al., Dept. of Earth and Space Sciences, University of Washington, Seattle, Washington 98195-1310, USA. Posted online 5 Feb. 2013; http://dx.doi.org/10.1130/GES00810.1.

The Saint Elias Range in southeast Alaska is a tectonically active and heavily glaciated coastal mountain system. In this study, Rachel Headley and colleagues review and combine glaciology and thermochronology data from the largest glacier systems in the region, the Seward-Malaspina and the Bagley-Bering-Tana. These datasets record the glacial flow, the hydrological system, and the exhumation of the bedrock under the ice. The combined datasets reveal that the two glacier systems, despite close proximity and similar size, show very different patterns of erosion and sediment transport. To fully understand this difference, says Headley, it is necessary to take into account glacier-specific properties and processes, such as subglacial water flow, surging of the glaciers, and bedrock topography and structural setting. This paper is part of the "Neogene Tectonics and Climate-Tectonic Interactions in the Southern Alaskan Orogen" series.

Interpretation of gravity and magnetic data and development of 2D cross-sectional models for the Border Ranges fault system, south-central Alaska
Niti Mankhemthong et al., Dept. of Geological Sciences, University of Texas at El Paso, El Paso, Texas 79968, USA. Posted online 5 Feb. 2013; http://dx.doi.org/10.1130/GES00833.1.

Extensive glacial cover and lack of dense geophysical data within the Cook Inlet basin (CIB) of south-central Alaska make locating and determining the geometry of the Border Ranges fault system (BRFS), a major feature of the region, difficult. Niti Mankhemthong and colleagues use recently collected gravity data, available aeromagnetic data, and other geophysical information as constraints to develop plausible 2D cross-section models that better image the BRFS and related geologic structures of the CIB. Their models suggest the BRFS dips 50 to 70 degrees toward the west-northwest and extends to at least 15 km. Their integrated models also show a thick sequence of sedimentary rocks and volcanic rocks (6 to 20 km depth) overlying a high metamorphosed, hydrous rock body (serpentinite) at a depth of 16 to 34 km. The volcanic rocks and serpentinite are interpreted as possible sources of the south Alaska magnetic high over the CIB. The CIB's eastern boundaries are characterized by gravity and magnetic highs of the Border Range ultramafic and mafic assemblages (BRUMA), rocks high in iron and magnesium that have been derived from the lower crust and upper mantle. Formation of the BRUMA may be related to the presences of the deeper serpentinite body. A model that includes underplated sediments at the base of the crust beneath the northwestern Chugach Mountains (12 to 40 km) is consistent with an observed regional gravity low. The underplating may be associated with the process of subducting and shortening Yakutat microplate in south-central Alaska. This paper is part of the "Neogene Tectonics and Climate-Tectonic Interactions in the Southern Alaskan Orogen" series.

New thermochronometric constraints on the Tertiary landscape evolution of central and eastern Grand Canyon, Arizona
J.P. Lee et al., U.S. Geological Survey, Denver Federal Center MS974, Denver, Colorado 80225, USA. Posted online 5 Feb. 2013; http://dx.doi.org/10.1130/GES00842.1.

The Grand Canyon of Arizona, USA, is both a geologic wonder and enigma. Since its first geologic description over one hundred years ago, it has been the source of vigorous debate regarding the timing and processes of its formation. Ironically, the enormous magnitude of erosion that characterizes Grand Canyon is what obscures a description of its geologic history due to the almost complete removal of the Tertiary rock record. However, new analytical techniques have revived the century-old debate. In this study, J.P. Lee and colleagues present new data that allow insight into the thermal evolution of the rocks collected from the area of Grand Canyon. These thermal histories allow them to infer patterns of erosion through time, and therefore constrain the age of Grand Canyon. Results indicate that the region of Grand Canyon has undergone a spatially variable erosion history with segments of Grand Canyon forming at 28-20 million years ago while the easternmost segments of Marble Canyon formed no earlier than 10 million years ago. These observations indicate that the coherent landscape feature that we know today as Grand Canyon was actually assembled in a segmented fashion from inherited landscape features. The results here bring the geologic community one step further in constructing a unified theory that describes the complicated origin of Grand Canyon while honoring many previously described lines of geologic evidence. This paper is part of the "Crevolution 2: Origin and Evolution of the Colorado River System II" series.

Paleochannels, stream incision, erosion, topographic evolution, and alternative explanations of paleoaltimetry, Sierra Nevada, California
John Wakabayashi, Dept. of Earth and Environmental Sciences, California State University, Fresno, California 93740, USA. Posted online 5 Feb. 2013; http://dx.doi.org/10.1130/GES00814.1.

This paper by John Wakabayashi presents data bearing on the topographic evolution of the Sierra Nevada, California, USA. The systematic relationship between the azimuth and gradient of Eocene river channel deposits (paleochannels) strongly support late Cenozoic tilting and uplift of the range. Paleochannel reaches trending perpendicular to the range axis display the steepest gradients. In contrast, modern Sierran rivers do not show a systematic relationship between gradient and azimuth. Late Cenozoic initiation of significant stream incision (canyon cutting) also suggests late Cenozoic uplift, because this downcutting began in spite of apparently decreasing stream discharge and increasing sediment load. An increase in stream gradient (by tilting and uplift) best explains the onset of incision at that time. Late Cenozoic uplift and stream incision began earlier in the southern than in the northern part of the range. The southern part of the range has experienced two episodes of late Cenozoic uplift compared to a single one for the north. Stable isotope data, that have been interpreted to indicate a lack of late Cenozoic uplift, may reflect relatively recent reequilibration and/or the progressive advance of an erosional/weathering front downward into fresh rock. This study by Wakabayashi is potentially important for comparing and evaluating interpretations of the topographic evolution of mountainous regions derived from different methodologies, such as geomorphic-stratigraphic, thermochronologic, and stable isotope based paleoaltimetry. This paper is part of the "Origin and Evolution of the Sierra Nevada and Walker Lane" series.

### www.geosociety.org


ELSE PRESS RELEASES FROM THIS DATE:

Humans and robots work better together following cross-training

2013-02-12
CAMBRIDGE, Mass. — Spending a day in someone else's shoes can help us to learn what makes them tick. Now the same approach is being used to develop a better understanding between humans and robots, to enable them to work together as a team. Robots are increasingly being used in the manufacturing industry to perform tasks that bring them into closer contact with humans. But while a great deal of work is being done to ensure robots and humans can operate safely side-by-side, more effort is needed to make robots smart enough to work effectively with people, says Julie Shah, ...

How you treat others may depend on whether you're single or attached

2013-02-12
With Valentine's Day looming, many married couples will wish marital bliss for their single friends. At the same time, many singles will pity their coupled friends' loss of freedom. People like to believe that their way of life — whether single or coupled — is the best for everyone, especially if they think their relationship status is unlikely to change, according to a study forthcoming in Psychological Science, a journal of the Association for Psychological Science. The study suggests that this bias may influence how we treat others, even in situations where relationship ...

A new Harvard report probes security risks of extreme weather and climate change

2013-02-12
Increasingly frequent extreme weather events such as droughts, floods, severe storms, and heat waves have focused the attention of climate scientists on the connections between greenhouse warming and extreme weather. Because of the potential threat to U.S. national security, a new study was conducted to explore the forces driving extreme weather events and their impacts over the next decade, specifically with regard to their implications for national security planning. The report finds that the early ramifications of climate extremes resulting from climate change are already ...

University of Florida reports 2012 US shark attacks highest since 2000

2013-02-12
GAINESVILLE, Fla. — Shark attacks in the U.S. reached a decade high in 2012, while worldwide fatalities remained average, according to the University of Florida's International Shark Attack File report released today. The U.S. saw an upturn in attacks with 53, the most since 2000. There were seven fatalities worldwide, which is lower than 2011 but higher than the yearly average of 4.4 from 2001 to 2010. It is the second consecutive year for multiple shark attacks in Western Australia (5) and Reunion Island (3) in the southwest Indian Ocean, which indicates the localities ...

US Supreme Court under the microscope

2013-02-12
Although the current Supreme Court has been criticized for its lack of diversity on the bench, the Court is actually more diverse overall today than ever in history, according to a new study that borrows statistical methods from ecology to reveal a more precise picture of diversity. The study, which appears in the online edition of the Journal of Empirical Legal Studies, examines seven categories of diversity for every Supreme Court justice since the Court first convened in 1790 with Justice John Jay, including ethnic/racial origin, religion, professional background, childhood ...

Newly identified natural protein blocks HIV, other deadly viruses

2013-02-12
A team of UCLA-led researchers has identified a protein with broad virus-fighting properties that potentially could be used as a weapon against deadly human pathogenic viruses such as HIV, Ebola, Rift Valley Fever, Nipah and others designated "priority pathogens" for national biosecurity purposes by the National Institute of Allergy and Infectious Disease. In a study published in the January issue of the journal Immunity, the researchers describe the novel antiviral property of the protein, cholesterol-25-hydroxylase (CH25H), an enzyme that converts cholesterol to an ...

Cancer risk for African-American women with benign breast disease factors Wayne State finds

Cancer risk for African-American women with benign breast disease factors Wayne State finds
2013-02-12
DETROIT — A Wayne State University researcher has identified characteristics in benign breast disease associated with future cancer risk in African-American women. Michele Cote, Ph.D., associate professor of oncology in the School of Medicine and the Barbara Ann Karmanos Cancer Institute, recently reviewed data from about 1,400 20- to 84-year-old African-American women who underwent breast biopsies between 1997 and 2000. Researchers identified biopsies that showed benign breast disease (BBD) and also tracked subsequent breast cancers. BBD is an established risk factor ...

Study finds increase in dance-related injuries in children and adolescents

Study finds increase in dance-related injuries in children and adolescents
2013-02-12
Dance is a beautiful form of expression, but it could be physically taxing and strenuous on the human body, particularly for children and adolescents. A new study by researchers at the Center for Injury Research and Policy of The Research Institute at Nationwide Children's Hospital examined dance-related injuries among children and adolescents 3 to 19 years of age from 1991 to 2007. During the 17-year study period, an estimated 113,000 children and adolescents were treated in U.S. emergency departments for dance-related injuries. According to the study, which is being ...

Lack of energy an enemy to antibiotic-resistant microbes

2013-02-12
Rice University researchers "cured" a strain of bacteria of its ability to resist an antibiotic in an experiment that has implications for a long-standing public health crisis. Rice environmental engineer Pedro Alvarez and his team managed to remove the ability of the Pseudomonas aeruginosa microorganism to resist the antibiotic medication tetracycline by limiting its access to food and oxygen. Over 120 generations, the starving bacteria chose to conserve valuable energy rather than use it to pass on the plasmid – a small and often transmissible DNA element – that ...

USC researchers find possible genetic clues to organ development, birth defects

2013-02-12
VIDEO: Using cutting-edge time-lapse photography, University of Southern California researchers have discovered clues to the development of the head at the cellular level, which could point scientists to a better understanding... Click here for more information. Highlights of this news release: The research has determined two molecular signaling pathways that help control formation of the head and face The discovery may lead to future understanding of certain birth defects ...

LAST 30 PRESS RELEASES:

Terahertz pulses induce chirality in a non-chiral crystal

AI judged to be more compassionate than expert crisis responders: Study

Scale-up fabrication of perovskite quantum dots

Adverse childhood experiences influence potentially dangerous firearm-related behavior in adulthood

Bacteria found to eat forever chemicals — and even some of their toxic byproducts

London cabbies’ planning strategies could help inform future of AI

More acidic oceans may affect the sex of oysters

Transportation insecurity in Detroit and beyond

New tool enables phylogenomic analyses of entire genomes

Uncovering the role of Y chromosome genes in male fertility in mice

A single gene underlies male mating morphs in ruff sandpipers

Presenting CASTER – a novel method for evolutionary research

Reforestation boosts biodiversity, while other land-based climate mitigation strategies fall short

Seasonal vertical migrations limit role of krill in deep-ocean carbon storage

Child mortality has risen since pandemic, new study shows

Super enzyme that regulates testosterone levels in males discovered in ‘crazy’ bird species

Study tracks physical and cognitive impairments associated with long COVID

Novel model advances microfiber-reinforced concrete research

Scientists develop new AI method to forecast cyclone rapid intensification

Interpreting metamaterials from an artistic view

Smoking cannabis in the home increases odds of detectable levels in children

Ohio State astronomy professor awarded Henry Draper Medal

Communities of color face greater barriers in accessing opioid medications for pain management

Researchers track sharp increase in diagnoses for sedative, hypnotic and anxiety use disorder in young adults

Advancement in DNA quantum computing using electric field gradients and nuclear spins

How pomalidomide boosts the immune system to fight multiple myeloma

PREPSOIL webinar explores soil literacy among youth: Why it matters and how educators can foster it

Imagining the physics of George R.R. Martin’s fictional universe

New twist in mystery of dinosaurs' origin

Baseline fasting glucose level, age, sex, and BMI and the development of diabetes in US adults

[Press-News.org] From grains of volcanic glass to continental rifting: New Geosphere articles now online