PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Artificial platelets could treat injured soldiers on the battlefield

Designer blood clots

Artificial platelets could treat injured soldiers on the battlefield
2013-02-15
(Press-News.org) When it comes to healing the terrible wounds of war, success may hinge on the first blood clot – the one that begins forming on the battlefield right after an injury.

Researchers exploring the complex stream of cellular signals produced by the body in response to a traumatic injury believe the initial response – formation of a blood clot – may control subsequent healing. Using that information, they're developing new biomaterials, including artificial blood platelets laced with regulatory chemicals that could be included in an injector device the size of an iPhone. Soldiers wounded in action could use the device to treat themselves, helping control bleeding, stabilizing the injury and setting the right course for healing.

Formation of "designer" blood clots from the artificial platelets would be triggered by the same factor that initiates the body's natural clotting processes. In animal models, the synthetic platelets reduced clotting time by approximately 30 percent, though the materials have not yet been tested in humans.

"The idea is to have on the battlefield technologies that would deliver a biomaterial capable of finding where the bleeding is happening and augmenting the body's own clotting processes," said Thomas Barker, an associate professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. "Simultaneously, the material would help instruct the biochemistry and biophysics of the clot structure that would govern subsequent healing."

Barker is scheduled to present information on the research Friday, Feb. 15 in a briefing at the annual meeting of the American Association for the Advancement of Science (AAAS). The research has been sponsored in part by the National Institutes of Health (NIH), by the U.S. Department of Defense through the Center for Advanced Bioengineering for Soldier Survivability at Georgia Tech, and by an American Heart Association postdoctoral fellowship to Ashley Brown, a postdoctoral fellow working on the project.

After an injury, the most critical need is to stop the bleeding. But as traumatic injuries heal, they often produce significant scarring that is difficult to treat. Georgia Tech researchers are working on both sides of the problem, developing cell signaling techniques that may head off the formation of scars – as well as techniques for addressing the fibrosis that is often the long-term result. Beyond helping halt the bleeding, the synthetic platelets would deliver regulatory chemicals designed to prevent scarring.

"The blood clot actually ends up directing how the entire wound healing process is going to occur," Barker said. "The initial clot matrix instructs very specific cellular behaviors which have consequences for the next wave of cells that comes in to do specific jobs, which have consequences for the next wave of cells. If we can modify that initial clot, it can become the three-dimensional matrix needed to build the regenerated or repaired tissue."

The synthetic platelets, made from tiny structures known as hydrogels, could be injected into the bloodstream where they would circulate until activated by the body's own clotting processes. Once activated, the particles – which are about one micron in diameter – would change shape, converting to a thin film that would help seal wounds. To develop these hydrogels, Barker is collaborating with Andrew Lyon, a professor in Georgia Tech's School of Chemistry and Biochemistry.

The bloodstream contains proteins known as fibrinogen that are the precursors for fibrin, the polymer that provides the basic structure for natural blood clots. When they receive the right signals from a protein called thrombin, these precursors polymerize at the site of the bleeding. To prevent unintended activation of their synthetic platelets, the researchers use the same trigger.

The researchers followed a process known as molecular evolution to develop an antibody that could be attached to the hydrogels to cause their form to change when they encounter thrombin-activated fibrin. The resulting antibody has high affinity for the polymerized form of fibrin and low affinity for the precursor.

"We knew the molecule that we wanted and we knew the domains that were critical for recognition," Barker said. "The primary design concept was the ability to recognize an active, forming clot from the soluble, inactive precursor."

The artificial platelets have so far been tested in rats, and separately using in vitro simulated endothelial systems in the laboratory of Wilbur Lam, an assistant professor at Emory University in Atlanta. Though the work is a long way from a device that could be used on the battlefield, Barker envisions transitioning the research to a startup company that develop the technology to improve survivability for wounded soldiers.

"You could have it literally in the pocket of any soldier, who could pop it out when needed," Barker explained. "As the needle is extended, you would break the package of freeze-dried particles. The device would then be placed on the abdomen, where the particles would be injected into the bloodstream. They would circulate inactive until they encountered the initiation of clotting."

Once the bleeding was stopped, cytokines and anti-inflammatory compounds within the "designer" clot could help determine the phenotype that should be adopted by healing cells and regulate their behavior. That would set the stage for the subsequent healing process.

To help soldiers already suffering from the effects of fibrosis – the contraction of scarred tissue – the researchers are developing a polymer to which a natural peptide is attached. The peptide helps regulate the repair process that produces scars and could ultimately help reduce or reverse the effects of fibrosis. The technique has reversed the effects of pulmonary fibrosis in an animal model.

Though the research focuses on the needs of soldiers injured on the battlefield, many of the technologies could ultimately find civilian use. Because the artificial platelets would only activate when the encounter thrombin-activated fibrin, they could be used by emergency medical technicians treating patients in which internal bleeding is suspected, Barker said.



INFORMATION:

This research is supported by the National Institutes of Health (NIH) under contract R21EB013743 and by the U.S. Department of Defense (DoD) under contract W81XWH110306. The conclusions are those of the authors and do not necessarily represent the official views of the NIH or the DoD.


[Attachments] See images for this press release:
Artificial platelets could treat injured soldiers on the battlefield

ELSE PRESS RELEASES FROM THIS DATE:

NIH study shows big improvement in diabetes control over past decades

2013-02-15
More people are meeting recommended goals in the three key markers of diabetes control, according to a study conducted and funded by the National Institutes of Health and the Centers for Disease Control and Prevention. The report, published online February 15 in Diabetes Care, shows that, from 1988 to 2010, the number of people with diabetes able to meet or exceed all three of the measures that demonstrate good diabetes management rose from about 2 percent to about 19 percent. Each measure also showed substantial improvement, with over half of people meeting each individual ...

Climate change's costly wild weather consequences

Climate changes costly wild weather consequences
2013-02-15
CHAMPAIGN, Ill. — Throughout 2012, the United States was battered by severe weather events such as hurricanes and droughts that affected both pocketbooks and livelihoods. Research suggests that in the coming years, U.S. five-day forecasts will show greater numbers of extreme weather events, a trend linked to human-driven climate change. Donald Wuebbles, a professor of atmospheric sciences at the University of Illinois at Urbana-Champaign, will discuss extreme weather in a presentation Feb. 15 at the annual meeting of the American Association for the Advancement of Science ...

Scientists find promising new approach to preventing progression of breast cancer

Scientists find promising new approach to preventing progression of breast cancer
2013-02-15
LA JOLLA, CA – February 15, 2013 – Doctors currently struggle to determine whether a breast tumor is likely to shift into an aggressive, life-threatening mode—an issue with profound implications for treatment. Now a group from The Scripps Research Institute (TSRI) has identified a mechanism through which mitochondria, the powerhouses of a cell, control tumor aggressiveness. Based on their findings, the team developed a simple treatment that inhibits cancer progression and prolongs life when tested in mice. The research team, which describes its results February 15, 2013, ...

Study finds that 'Big Pharma' fails at self-policing ED drug advertising

2013-02-15
CHARLOTTE, N.C. –Feb. 14, 2013– The pharmaceutical industry's efforts to self-regulate its direct-to-consumer (DTC) advertising are "an industry-sponsored ruse," intended to deflect criticism and collectively block new Federal regulation, a study released today in the Journal of Health Politics, Policy and Law found. The paper, "The Politics and Strategy of Industry Self-Regulation: The Pharmaceutical Industry's Principles for Ethical Direct-to-Consumer Advertising as a Deceptive Blocking Strategy," was written by Denis Arnold, Associate Professor of Management and Surtman ...

Avoiding virus dangers in 'domesticating' wild plants for biofuel use

2013-02-15
In our ongoing quest for alternative energy sources, researchers are looking more to plants that grow in the wild for use in biofuels, plants such as switchgrass. However, attempts to "domesticate" wild-growing plants have a downside, as it could make the plants more susceptible to any number of plant viruses. In a presentation at this year's meeting of the American Association for the Advancement of Science, Michigan State University plant biologist Carolyn Malmstrom said that when we start combining the qualities of different types of plants into one, there can be ...

Breast cancer risk prediction model for African American women underestimates risk

2013-02-15
(Boston) – A breast cancer risk prediction model developed for African Americans tends to underestimate risk in certain subgroups, according to a new study from the Slone Epidemiology Center (SEC) at Boston University. The model predicted estrogen receptor (ER)-negative breast cancer, which is a more aggressive form of breast cancer that disproportionately affects African American women, more poorly than ER-positive breast cancer. The study, published online today in the Journal of the National Cancer Institute, was led by Deborah Boggs, ScD, postdoctoral associate at ...

Neuronal activity induces tau release from healthy neurons

2013-02-15
HEIDELBERG, 15 February 2013 – Researchers from King's College London have discovered that neuronal activity can stimulate tau release from healthy neurons in the absence of cell death. The results published by Diane Hanger and her colleagues in EMBO reports show that treatment of neurons with known biological signaling molecules increases the release of tau into the culture medi-um. The release of tau from cortical neurons is therefore a physiological process that can be regulated by neuronal activity. Tau proteins stabilize microtubules, the long threads of polymers ...

University of Waterloo researchers propose breakthrough architecture for quantum computers

2013-02-15
WATERLOO, Ont. (Thursday, Feb. 14, 2013) A team of researchers at the University of Waterloo's Institute for Quantum Computing has proposed a new computational model that may become the architecture for a scalable quantum computer. In a paper to be published in the journal Science this week, the research team of IQC Associate Professor Andrew Childs, post-doctoral fellow David Gosset and PhD student Zak Webb proposes using multi-particle quantum walks for universal computation. In a multi-particle quantum walk, particles live on the vertices of a graph and can move between ...

UTSW researchers identify new enzyme that acts as innate immunity sensor

UTSW researchers identify new enzyme that acts as innate immunity sensor
2013-02-15
DALLAS – Feb. 15, 2013 – Two studies by researchers at UT Southwestern Medical Center could lead to new treatments for lupus and other autoimmune diseases and strengthen current therapies for viral, bacterial, and parasitic infections. The studies identify a new enzyme that acts as a sensor of innate immunity – the body's first line of defense against invaders – and describe a novel cell signaling pathway. This pathway detects foreign DNA or even host DNA when it appears in a part of the cell where DNA should not be. In addition, the investigations show that the process ...

Researchers uncover new findings on genetic risks of Behçet's disease

Researchers uncover new findings on genetic risks of Behçets disease
2013-02-15
ANN ARBOR, Mich. — Researchers don't know the exact cause of Behçet's disease, a chronic condition that leads to oral and genital sores and serious complications such as blindness, but new research brings better understanding to what makes some people more susceptible to being affected. In one of the most extensive genetic analyses of Behçet's disease, a University of Michigan-led, international team of researchers has identified novel gene variants in the inflammatory disorder and uncovered data that could apply to studies of other diseases. The results appear in the ...

LAST 30 PRESS RELEASES:

Eye for trouble: Automated counting for chromosome issues under the microscope

The vast majority of US rivers lack any protections from human activities, new research finds

Ultrasound-responsive in situ antigen "nanocatchers" open a new paradigm for personalized tumor immunotherapy

Environmental “superbugs” in our rivers and soils: new one health review warns of growing antimicrobial resistance crisis

Triple threat in greenhouse farming: how heavy metals, microplastics, and antibiotic resistance genes unite to challenge sustainable food production

Earthworms turn manure into a powerful tool against antibiotic resistance

AI turns water into an early warning network for hidden biological pollutants

Hidden hotspots on “green” plastics: biodegradable and conventional plastics shape very different antibiotic resistance risks in river microbiomes

Engineered biochar enzyme system clears toxic phenolic acids and restores pepper seed germination in continuous cropping soils

Retail therapy fail? Online shopping linked to stress, says study

How well-meaning allies can increase stress for marginalized people

Commercially viable biomanufacturing: designer yeast turns sugar into lucrative chemical 3-HP

Control valve discovered in gut’s plumbing system

George Mason University leads phase 2 clinical trial for pill to help maintain weight loss after GLP-1s

Hop to it: research from Shedd Aquarium tracks conch movement to set new conservation guidance

Weight loss drugs and bariatric surgery improve the body’s fat ‘balance:’ study

The Age of Fishes began with mass death

TB harnesses part of immune defense system to cause infection

Important new source of oxidation in the atmosphere found

A tug-of-war explains a decades-old question about how bacteria swim

Strengthened immune defense against cancer

Engineering the development of the pancreas

The Journal of Nuclear Medicine ahead-of-print tip sheet: Jan. 9, 2026

Mount Sinai researchers help create largest immune cell atlas of bone marrow in multiple myeloma patients

Why it is so hard to get started on an unpleasant task: Scientists identify a “motivation brake”

Body composition changes after bariatric surgery or treatment with GLP-1 receptor agonists

Targeted regulation of abortion providers laws and pregnancies conceived through fertility treatment

Press registration is now open for the 2026 ACMG Annual Clinical Genetics Meeting

Understanding sex-based differences and the role of bone morphogenetic protein signaling in Alzheimer’s disease

Breakthrough in thin-film electrolytes pushes solid oxide fuel cells forward

[Press-News.org] Artificial platelets could treat injured soldiers on the battlefield
Designer blood clots