PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Pancakes with a side of math

A physiological model for sap exudation in maple trees

2013-03-07
(Press-News.org) Philadelphia, PA—For many of us, maple syrup is an essential part of breakfast—a staple accompaniment to pancakes and waffles—but rarely do we think about the complicated and little-understood physiological aspects of syrup production. Each spring, maple growers in temperate regions around the world collect sap from sugar maple trees, which is one of the first steps in producing this delicious condiment.

However, the mechanisms behind sap exudation—processes that trigger pressure differences causing sap to flow— in maple trees are a topic of much debate. In a paper published today in the SIAM Journal on Applied Mathematics, authors Maurizio Ceseri and John Stockie shed light on this subject by proposing a mathematical model for the essential physiological processes that drive sap flow.

Sugars are produced in the leaves of the maple tree by photosynthesis with the help of absorbed water, carbon dioxide, and sunlight, and are consumed for current growth, or stored as starch. In the cold, dormant season, some of the starch enters the sap, where it remains mostly frozen until the spring. In the period between this dormant state and the active growing season (during cold nights with below-freezing temperatures followed by mild, warm days with above-freezing conditions), the stored starch is converted into sugar and the sap pressure grows, allowing it to exude naturally from the tap hole when tapped.

"The root causes of sap exudation before the onset of the growing season, which allow trees like maple to be tapped for sap in commercially exploitable quantities, have been debated in the biology community for decades," explains co-author John Stockie. "Several possible mechanisms have been proposed, but until now, no one has developed a complete mathematical model that adequately explains which mechanisms are actually required. Resolving this controversy is the main purpose of our work from a botanical standpoint."

The "physical" model of sap exudation attributes the mechanism entirely to pressure and volume changes that result from passive, physical effects in the tree's vascular tissue: expansion and contraction of gas as well as freezing and thawing of sap, which occur in response to temperature changes.

Experimental evidence supports this physical model, and the current understanding is that gas trapped in vascular tissue is compressed by growth of ice crystals and water uptake when the tree freezes in colder months; when the tissue subsequently thaws in the spring, the compressed gas expands, which generates the pressure that causes exudation. Osmotic pressure, which exists due to differences in sugar concentration between different components of the vascular tissue helps maintain stable gas bubbles, thus allowing the freeze/thaw mechanism to cause sap flow.

The model in the paper is based on this currently understood mechanism for internal pressure build up in maple trees. Using a system of differential algebraic equations, which govern the multiphase gas-liquid-ice environment, the model incorporates the dynamics and effects of thawing sap, dissolving gas bubbles and an osmotic pressure gradient between two components (vessels and fibers) in the tree's non-living vascular tissue. On the cellular level, the model focuses on the transfer of pressure between vessels and fibers in the vascular cells.

Using numerical simulation, the authors validate the model: They conclude that compression of gas effected by freezing in the previous season is important for pressure build up. The effect of gas bubbles is also necessary to allow transfer of pressure, which causes exudation. While osmosis is not essential for the pressure generation itself, it is seen to maintain gas bubbles, which help in creating the pressure differences necessary.

This work goes a long way in explicating the physical effects that play a role in the mechanism of sap exudation. However, as Stockie explains, "Our paper considers only the thawing process. To capture the build-up of pressure observed in actual maple stems, we must also include the freezing process, as well as multiple freeze/thaw cycles. This is work in progress."

"On the commercial side, we plan to ultimately develop a "complete" model of sap flow in a maple tree that can be used in sugarbush management and optimizing sap harvests," he continues. "A full-tree model for sap flow will be useful in optimization studies. We are studying how to 'scale-up' these cell-level freeze/thaw processes into a tree-level model."

The authors have and appreciate the opportunity to interact regularly with maple syrup producers. "These are people that come from a surprising variety of backgrounds, ranging from farmers to retired teachers to construction company owners, including very few scientists and no-one (yet) with a background in advanced mathematics," says Stockie. "Nonetheless, we find that maple syrup producers have a real enthusiasm for our work and are excited by the potential for mathematics to contribute to their understanding of very practical problems for the industry."

Hence, according to Stockie, the researchers are constantly bombarded with questions like: What effect will recent climate changes have on future sap yields? Why does a light snow cover around the trunk have such a big influence on stem pressures? Why does sap flow drop immediately after a west wind? "These are questions we can't answer yet," he says. "But our aim is to come up with a model that will!"

###

Source Article:

A Mathematical Model of Sap Exudation in Maple Trees Governed by Ice Melting, Gas Dissolution, and Osmosis Maurizio Ceseri and John Stockie SIAM Journal on Applied Mathematics, 73(2), 649–676 (Online publish date: March 6, 2013). The source article is available for free access at the link above until June 6, 2013.

About the authors:

John Stockie is an associate professor of mathematics and Maurizio Ceseri a postdoctoral researcher at Simon Fraser University in Surrey, British Columbia. This work was supported by grants from the Natural Science and Engineering Research Council of Canada, Mprime Network of Centres of Excellence, and North American Maple Syrup Council.

About SIAM

The Society for Industrial and Applied Mathematics (SIAM), headquartered in Philadelphia, Pennsylvania, is an international society of over 14,000 individual members, including applied and computational mathematicians and computer scientists, as well as other scientists and engineers. Members from 85 countries are researchers, educators, students, and practitioners in industry, government, laboratories, and academia. The Society, which also includes nearly 500 academic and corporate institutional members, serves and advances the disciplines of applied mathematics and computational science by publishing a variety of books and prestigious peer-reviewed research journals, by conducting conferences, and by hosting activity groups in various areas of mathematics. SIAM provides many opportunities for students including regional sections and student chapters. Further information is available at http://www.siam.org.

[Reporters are free to use this text as long as they acknowledge SIAM]

END



ELSE PRESS RELEASES FROM THIS DATE:

HIV therapy just got easier: Fewer drugs may be needed for treatment-experienced patients

2013-03-07
VIDEO: Karen Tashima, MD, director of the HIV Clinical Trials Program at The Miriam Hospital, led a study to look at new treatment regimens for patients with drug-resistant HIV. ... Click here for more information. PROVIDENCE, R.I. – A new multi-site study reveals patients with drug-resistant HIV can safely achieve viral suppression – the primary goal of HIV therapy – without incorporating the traditional class of HIV medications into their treatment regimen. Karen Tashima, M.D., ...

Majority of Albertans support assisted suicide: UAlberta study

2013-03-07
(Edmonton) An overwhelming majority of Albertans believe dying adults should have the right to request to end their life, according to new research from the University of Alberta. U of A researcher Donna Wilson led the team that studied the views of 1,203 Albertans on assisted suicide, currently illegal in Canada. A majority—77.4 per cent—felt dying adults should have the right to end their life early. "Increasingly, there are countries or states where they are allowing assisted suicide or euthanasia. Like many of those countries, Canada will have to grapple with this ...

UTHealth researchers find industrial chemicals in food samples

2013-03-07
HOUSTON – (March 6, 2013) – Researchers at The University of Texas Health Science Center at Houston (UTHealth) have discovered phthalates, industrial chemicals, in common foods purchased in the United States. Phthalates can be found in a variety of products and food packaging material, child-care articles and medical devices. "Although it's not completely understood how phthalates get into our food, packaging may be a contributor to the levels of the toxin in food," said lead investigator Arnold Schecter, M.D., M.P.H., professor of environmental health at The University ...

A new cryptic spider species from Africa

A new cryptic spider species from Africa
2013-03-07
The species from the genus Copa are very common spiders found in the leaf litter of various habitats. Being predominantly ground-living, they occur widely in savanna woodlands but also occasionally in forests, where they are well camouflaged. They usually share the litter microhabitats with several other species of the family Corinnidae. The spiders from this cryptic, ground-dwelling genus in the continental Afrotropical Region are revised in a study published in the open access journal Zookeys. The number of continental species in the Afrotropical Region has been reduced ...

How to predict the progress of technology

2013-03-07
CAMBRIDGE, MA -- Researchers at MIT and the Santa Fe Institute have found that some widely used formulas for predicting how rapidly technology will advance — notably, Moore's Law and Wright's Law — offer superior approximations of the pace of technological progress. The new research is the first to directly compare the different approaches in a quantitative way, using an extensive database of past performance from many different industries. Some of the results were surprising, says Jessika Trancik, an assistant professor of engineering systems at MIT. The findings could ...

Iowa State engineers developing ideas, technologies to save the Earth from asteroids

Iowa State engineers developing ideas, technologies to save the Earth from asteroids
2013-03-07
AMES, Iowa – Bong Wie has heard the snickers. You want to protect the Earth from asteroids? Where were you when the dinosaurs needed you? You want to be like Bruce Willis in that asteroid movie? Wie has a serious reply: After five years of science and engineering work, Wie and his small team have a publication list of 40-plus technical papers, $600,000 of NASA research support and a proposal for a $500 million test launch of an asteroid intercept system. Plus, Wie has just been invited to show off his research as part of NASA's Technology Day on the Hill in Washington, ...

INRS overcomes a hurdle in the development of terahertz lasers

2013-03-07
This press release is available in French. Dr. Roberto Morandotti and his team at the INRS Énergie Matériaux Télécommunications Research Centre have developed a device that is critical to the use of terahertz (THz) sources for a variety of applications. Their electromagnetic non-reciprocal isolator is the subject of a recent article in Nature Communications, showing just how important this new development is. Until now, no isolator existed that was effective in the THz region of the spectrum, a situation that held back the development of certain technologies. The new ...

Star-shaped glial cells act as the brain's 'motherboard'

Star-shaped glial cells act as the brains motherboard
2013-03-07
The transistors and wires that power our electronic devices need to be mounted on a base material known as a "motherboard." Our human brain is not so different — neurons, the cells that transmit electrical and chemical signals, are connected to one another through synapses, similar to transistors and wires, and they need a base material too. But the cells serving that function in the brain may have other functions as well. PhD student Maurizio De Pittà of Tel Aviv University's Schools of Physics and Astronomy and Electrical Engineering says that astrocytes, the star-shaped ...

Ketchup turns somersaults

Ketchup turns somersaults
2013-03-07
This press release is available in German. The unusual behavior of complex fluids is part of our daily life: cake dough climbs up the stirring bar, ketchup becomes liquid when you shake it. Also technology uses such phenomena: if we add a small amount of long-chained polymer molecules, a pipeline can transport more oil. The polymers reduce the flow resistance. But up to now the origin of these effects was unclear. The engineers had to rely on estimates and lengthy trials. A team of physicists led by Professor Andreas Bausch, Chair of Cellular Biophysics at TUM now ...

Mayo Clinic aids discovery of first dystonia gene found in African-Americans

2013-03-07
JACKSONVILLE, Fla. — A pair of studies tells the tale of how a neuroscientist at Mayo Clinic in Florida helped to discover the first African-American family to have inherited the rare movement disorder dystonia, which causes repetitive muscle contractions and twisting, resulting in abnormal posture. The research may improve diagnosis of this neurological condition in a population not known to suffer from it. In the first study, published in 2011 in the journal Parkinsonism and Related Disorders, Mayo Clinic's Zbigniew Wszolek, M.D., and a team of neuroscientists from ...

LAST 30 PRESS RELEASES:

Could the contraceptive pill reduce risk of ovarian cancer?

Launch of the most comprehensive, and up to date European Wetland Map

Lurie Children’s campaign urges parents to follow up right away if newborn screening results are abnormal

Does drinking alcohol really take away the blues? It's not what you think

Speed of risk perception is connected to how information is arranged

High-risk pregnancy specialists analyze AI system to detect heart defects on fetal ultrasound exams

‘Altar tent’ discovery puts Islamic art at the heart of medieval Christianity

Policy briefs present approach for understanding prison violence

Early adult mortality is higher than expected in US post-COVID

Recycling lithium-ion batteries cuts emissions and strengthens supply chain

Study offers new hope for relieving chronic pain in dialysis patients

How does the atmosphere affect ocean weather?

Robots get smarter to work in sewers

Speech Accessibility Project data leads to recognition improvements on Microsoft Azure

Tigers in the neighborhood: How India makes room for both tigers and people

Grove School’s Arthur Paul Pedersen publishes critical essay on scientific measurement literacy

Moffitt study finds key biomarker to predict KRASG12C inhibitor effectiveness in lung cancer

Improving blood transfusion monitoring in critical care patients: Insights from diffuse optics

Powerful legal and financial services enable kleptocracy, research shows

Carbon capture from constructed wetlands declines as they age

UCLA-led study establishes link between early side effects from prostate cancer radiation and long-term side effects

Life cycles of some insects adapt well to a changing climate. Others, not so much.

With generative AI, MIT chemists quickly calculate 3D genomic structures

The gut-brain connection in Alzheimer’s unveiled with X-rays

NIH-funded clinical trial will evaluate new dengue therapeutic

Sound is a primary issue in the lives of skateboarders, study shows

Watch what you eat: NFL game advertisements promote foods high in fat, sodium

Red Dress Collection Concert hosted by Sharon Stone kicks off American Heart Month

One of the largest studies on preterm birth finds a maternal biomarker test significantly reduces neonatal morbidities and improves neonatal outcomes

One of the largest studies of its kind finds early intervention with iron delivered intravenously during pregnancy is a safe and effective treatment for anemia

[Press-News.org] Pancakes with a side of math
A physiological model for sap exudation in maple trees