(Press-News.org) (Embargoed) CHAPEL HILL, N.C. – New research from the University of North Carolina School of Medicine for the first time explains exactly how two brain regions interact to promote emotionally motivated behaviors associated with anxiety and reward.
The findings could lead to new mental health therapies for disorders such as addiction, anxiety, and depression. A report of the research was published online by the journal, Nature, on March 20, 2013.
Located deep in the brain's temporal lobe are tightly packed clusters of brain cells in the almond shaped amygdala that are important for processing memory and emotion. When animals or people are in stressful situations, neurons in an extended portion of the amygdala called the bed nucleus of the stria terminalis, or BNST, become hyperactive.
But, almost paradoxically, neurons in the BNST, which modulate fear and anxiety, reach into a portion of the midbrain that's involved in behavioral responses to reward, the ventral tegmental area, or VTA.
"For many years it's been known that dopamine neurons in the VTA are involved in reward processing and motivation. For example, they're activated during exposure to drugs of abuse and naturally rewarding experiences," says study senior author Garret Stuber, PhD, assistant professor in the departments of psychiatry and cell biology & physiology, and the UNC Neuroscience Center. "On the one hand, you have this area of the brain – the BNST – that's associated with aversion and anxiety, but it's in direct communication with a brain reward center. We wanted to figure out exactly how these two brain regions interact to promote different types of behavioral responses related to anxiety and reward."
In the past, researchers have tried to get a glimpse into the inner workings of the brain using electrical stimulation or drugs, but those techniques couldn't quickly and specifically change only one type of cell or one type of connection. But optogenetics, a technique that emerged about seven years ago, can.
In the technique, scientists transfer light-sensitive proteins called "opsins" – derived from algae or bacteria that need light to grow – into the mammalian brain cells they wish to study. Then they shine laser beams onto the genetically manipulated brain cells, either exciting or blocking their activity with millisecond precision.
First, Stuber and colleagues used optogenetics for "photo-tagging," to optically identify different types of neurons in vivo. This enabled them to identify a neuron in the BNST that's projecting into the VTA. "So we know the neuron is directly interfacing with a reward-related brain region," Stuber says.
They then exposed animals (mice) to a mild aversive stimulus, a carefully controlled but anxiety-provoking foot shock delivered repeatedly and unpredictably. The BNST neurons projecting into the VTA showed changes in their firing rate, "But some cells would increase their activity and other would suppress their firing," Stuber says, adding that it suggested there are functionally distinct populations of neurons within the BNST that are projecting to the VTA, thus highlighting the complexity of this neural circuit.
Stuber and his team then repeated the experiment, but this time optically identified BNST neurons that project to the VTA as either excitatory or inhibitory cells, by integrating the approach they developed with the use of transgenic animals that allows for precise targeting of distinct neuronal cell types. The glutamate (excitatory) neurons were the cell population that increased their activity in response to the foot shocks. And the GABAergic (inhibitory) cells showed activity suppression during foot shock.
Finally, the researchers found that stimulating either of these brain cell pathways had opposing behavioral consequences. The glutamate neurons provoked an aversive, avoidance behavioral response and promoted anxiety-like behavior in the mice. In contrast, when Stuber's team activated the GABAergic pathway projections from the BNST into the VTA, the animals showed reward-associated behaviors and less anxiety. They preferred that stimulation and would spend more time in the area of the cage where they had received it.
"If you activated the GABA cells, they showed less anxiety. And when we exposed them to foot shock and at the same time activated this GABAergic pathway, it actually reduced the anxiety-associated behavioral consequences of that otherwise "aversive" stimulation," Stuber says.
"Because these cells are functionally and genetically distinct from each other, our findings also point to new potential targets for therapeutic interventions in neuropsychiatric disorders associated with alterations in motivated states such as addiction.
INFORMATION:
Along with Stuber, UNC study co-authors from the department of psychiatry are Joshua H. Jennings, Dennis R. Sparta, Alice M. Stamatakis and Randall L. Ung. Other co-authors on this study include Kristen E. Pleil and Thomas L. Kash who are affiliated with the department of pharmacology, and the Bowles Center for Alcohol Studies.
Support for the study comes from the National Institutes of Health, the Whitehall Foundation, and the Foundation of Hope.
UNC study shows how 2 brain areas interact to trigger divergent emotional behaviors
2013-03-21
ELSE PRESS RELEASES FROM THIS DATE:
Study reveals potential immune benefits of vitamin D supplements in healthy individuals
2013-03-21
(Boston) – Research from Boston University School of Medicine (BUSM) shows that improving vitamin D status by increasing its level in the blood could have a number of non-skeletal health benefits. The study, published online in PLOS ONE, reveals for the first time that improvement in the vitamin D status of healthy adults significantly impacts genes involved with a number of biologic pathways associated with cancer, cardiovascular disease (CVD), infectious diseases and autoimmune diseases. While previous studies have shown that vitamin D deficiency is associated with an ...
Biodiversity does not reduce transmission of disease from animals to humans
2013-03-21
More than three quarters of new, emerging or re-emerging human diseases are caused by pathogens from animals, according to the World Health Organization.
But a widely accepted theory of risk reduction for these pathogens – one of the most important ideas in disease ecology – is likely wrong, according to a new study co-authored by Stanford Woods Institute for the Environment Senior Fellow James Holland Jones and former Woods-affiliated ecologist Dan Salkeld.
The dilution effect theorizes that disease risk for humans decreases as the variety of species in an area increases. ...
Sustainable Development Goals must sustain people and planet
2013-03-21
In the wake of last week's meetings at the UN on the definition of the Sustainable Development Goals (SDGs), a group of international scientists have published a call in the journal Nature today, arguing for a set of six SDGs that link poverty eradication to protection of Earth's life support. The researchers argue that in the face of increasing pressure on the planet's ability to support life, adherence to out-dated definitions of sustainable development threaten to reverse progress made in developing countries over past decades.
Ending poverty and safeguarding Earth's ...
Baffling blood problem explained
2013-03-21
In the early 1950's, a 66-year-old woman, sick with colon cancer, received a blood transfusion. Then, unexpectedly, she suffered a severe rejection of the transfused blood. Reporting on her case, the French medical journal Revue D'Hématologie identified her as, simply, "Patient Vel."
After a previous transfusion, it turns out, Mrs. Vel had developed a potent antibody against some unknown molecule found on the red blood cells of most people in the world—but not found on her own red blood cells.
But what was this molecule? Nobody could find it. A blood mystery began, ...
Media coverage of mass shootings contributes to negative attitudes towards mental illness
2013-03-21
News stories about mass shootings involving a shooter with mental illness heighten readers' negative attitudes toward persons with serious mental illness, according to a new report by the Johns Hopkins Bloomberg School of Public Health. The researchers also examined how such news stories impact support for policies to reduce gun violence. Compared to study respondents who did not read a story about a mass shooting, reading a news article describing a mass shooting raised readers' support for both gun restrictions for persons with serious mental illness, and for a ban on ...
Teen mentors inspire healthier choices in younger children
2013-03-21
COLUMBUS, Ohio – An obesity intervention taught by teen mentors in Appalachian elementary schools resulted in weight loss, lower blood pressure and healthy lifestyle changes among the younger students learning the curriculum, according to a new study.
In contrast, children taught the same lessons by adults in a traditional classroom saw no changes in their health outcomes.
The results of the eight-week clinical trial conducted by Ohio State University researchers suggest that school systems could consider using teen mentors to instruct younger children in select health-related ...
Charges for emergency room visits often based on incorrect assumptions
2013-03-21
Visits to the ER are not always for true medical emergencies – and some policymakers have been fighting the problem by denying or limiting payments if the patient's diagnosis upon discharge is for "nonemergency" conditions.
Now a new UC San Francisco study challenges that framework by showing that criteria used as a basis to determine the appropriateness of an emergency room visit and to deny payment is inherently flawed. The study analyzed nearly 35,000 visits to hospital emergency departments around the country.
The research is published online today in JAMA (Journal ...
NIH-supported researchers identify new class of malaria compounds
2013-03-21
A group of researchers from 16 institutions around the world has identified a new class of anti-malarial compounds that target multiple stages of the malaria parasite's life cycle (http://www.niaid.nih.gov/topics/malaria/pages/lifecycle.aspx). These compounds could potentially be developed into drugs that treat and prevent malaria infection. Known as 4-(1H)-quinolone-3-diarylethers, the candidate anti-malarials are derived from a compound called endochin that effectively treats malaria in birds. When tested in the laboratory and in mice, the compounds demonstrated strong ...
Brain mapping reveals neurological basis of decision-making in rats
2013-03-21
Scientists at UC San Francisco have discovered how memory recall is linked to decision-making in rats, showing that measurable activity in one part of the brain occurs when rats in a maze are playing out memories that help them decide which way to turn. The more they play out these memories, the more likely they are to find their way correctly to the end of the maze.
In their study, reported this week in the journal Neuron, the UCSF researchers implanted electrodes directly on a region of the rat brain known as the hippocampus, which is already known to play a key role ...
New imaging agent enables better cancer detection, more accurate staging
2013-03-21
Researchers at the University of California, San Diego School of Medicine have shown that a new imaging dye, designed and developed at UC San Diego Moores Cancer Center, is an effective agent in detecting and mapping cancers that have reached the lymph nodes. The radioactive dye called Technetium Tc-99m tilmanocept, successfully identified cancerous lymph nodes and did a better job of marking cancers than the current standard dye. Results of the Phase III clinical trial published online today in the Annals of Surgical Oncology.
"Tilmanocept is a novel engineered radiopharmaceutical ...