(Press-News.org) An international team of physicists has proposed a revolutionary laser system, inspired by the telecommunications technology, to produce the next generation of particle accelerators, such as the Large Hadron Collider (LHC).
The International Coherent Amplification Network (ICAN) sets out a new laser system composed of massive arrays of thousands of fibre lasers, for both fundamental research at laboratories such as CERN and more applied tasks such as proton therapy and nuclear transmutation.
The results of this study are published today in Nature Photonics.
Lasers can provide, in a very short time measured in femtoseconds, bursts of energy of great power counted in petawatts or a thousand times the power of all the power plants in the world.
Compact accelerators are also of great societal importance for applied tasks in medicine, such as a unique way to democratise proton therapy for cancer treatment, or the environment where it offers the prospect to reduce the lifetime of dangerous nuclear waste by, in some cases, from 100 thousand years to tens of years or even less.
However, there are two major hurdles that prevent the high-intensity laser from becoming a viable and widely used technology in the future. First, a high-intensity laser often only operates at a rate of one laser pulse per second, when for practical applications it would need to operate tens of thousands of times per second. The second is ultra-intense lasers are notorious for being very inefficient, producing output powers that are a fraction of a percent of the input power. As practical applications would require output powers in the range of tens of kilowatts to megawatts, it is economically not feasible to produce this power with such a poor efficiency.
To bridge this technology divide, the ICAN consortium, an EU-funded project initiated and coordinated by the École polytechnique and composed of the University of Southampton's Optoelectronics Research Centre, Jena and CERN, as well as 12 other prestigious laboratories around the world, aims to harness the efficiency, controllability, and high average power capability of fibre lasers to produce high energy, high repetition rate pulse sources.
The aim is to replace the conventional single monolithic rod amplifier that typically equips lasers with a network of fibre amplifiers and telecommunication components.
Gérard Mourou of École polytechnique who leads the consortium says: "One important application demonstrated today has been the possibility to accelerate particles to high energy over very short distances measured in centimetres rather than kilometres as it is the case today with conventional technology. This feature is of paramount importance when we know that today high energy physics is limited by the prohibitive size of accelerators, of the size of tens of kilometres, and cost billions of euros. Reducing the size and cost by a large amount is of critical importance for the future of high energy physics."
Dr Bill Brocklesby from the ORC adds: "A typical CAN laser for high-energy physics may use thousands of fibres, each carrying a small amount of laser energy. It offers the advantage of relying on well tested telecommunication elements, such as fibre lasers and other components. The fibre laser offers an excellent efficiency due to laser diode pumping. It also provides a much larger surface cooling area and therefore makes possible high repetition rate operation.
"The most stringent difficulty is to phase the lasers within a fraction of a wavelength. This difficulty seemed insurmountable but a major roadblock has in fact been solved: preliminary proof of concept suggests that thousands of fibres can be controlled to provide a laser output powerful enough to accelerate electrons to energies of several GeV at 10 kHz repetition rate - an improvement of at least ten thousand times over today's state of the art lasers."
Such a combined fibre-laser system should provide the necessary power and efficiency that could make economical the production of a large flux of relativistic protons over millimetre lengths as opposed to a few hundred metres.
One important societal application of such a source is to transmute the waste products of nuclear reactors, which at present have half-lives of hundreds of thousands of years, into materials with much shorter lives, on the scale of tens of years, thus transforming dramatically the problem of nuclear waste management.
CAN technology could also find important applications in areas of medicine, such as proton therapy, where reliability and robustness of fibre technology could be decisive features.
INFORMATION:
Scientists propose revolutionary laser system to produce the next LHC
2013-03-28
ELSE PRESS RELEASES FROM THIS DATE:
Scientists identify brain's 'molecular memory switch'
2013-03-28
Scientists have identified a key molecule responsible for triggering the chemical processes in our brain linked to our formation of memories. The findings, published in the journal Frontiers in Neural Circuits, reveal a new target for therapeutic interventions to reverse the devastating effects of memory loss.
The BBSRC-funded research, led by scientists at the University of Bristol, aimed to better understand the mechanisms that enable us to form memories by studying the molecular changes in the hippocampus — the part of the brain involved in learning.
Previous ...
Declaring a truce with our microbiological frienemies
2013-03-28
Managing bacteria and other microorganisms in the body, rather than just fighting them, may be lead to better health and a stronger immune system, according to a Penn State biologist.
Researchers have historically focused on microbes in the body as primarily pathogens that must be fought, said Eric Harvill, professor of microbiology and infectious disease. However, he said that recent evidence of the complex interaction of the body with microbes suggests a new interpretation of the relationship.
"Now we are beginning to understand that the immune system interacts with ...
Parkinson's disease protein gums up garbage disposal system in cells
2013-03-28
PHILADELPHIA – Clumps of α-synuclein protein in nerve cells are hallmarks of many degenerative brain diseases, most notably Parkinson's disease.
"No one has been able to determine if Lewy bodies and Lewy neurites, hallmark pathologies in Parkinson's disease can be degraded," says Virginia Lee, PhD, director of the Center for Neurodegenerative Disease Research, at the Perelman School of Medicine, University of Pennsylvania.
"With the new neuron model system of Parkinson's disease pathologies our lab has developed recently, we demonstrated that these aberrant clumps ...
Common -- but without a name
2013-03-28
The most commonly occurring red alga in the algal order Bangiales in New Zealand has at last received a formal scientific name. Pyropia plicata, is an intertidal red alga, found in abundance in the North, South and Chatham Islands. It has been confused for many years with a species first collected from the New Zealand subantarctic islands in 1840. Recent research had clarified the identity and distribution of the southern species, Porphyra columbina, and also transferred it to the genus Pyropia. The description of Py. plicata was published in the open access journal PhytoKeys.
The ...
Mayo Clinic study: Physician spouses very satisfied in relationships
2013-03-28
ROCHESTER, Minn. -- It appears that the majority of spouses/partners of physicians in the United States are happy with their relationships, according to Mayo Clinic research. Of the about 900 spouses/partners of physicians who responded to a national survey, 85 percent said that they were satisfied in their relationship and 80 percent said they would choose a physician spouse/partner again if they could revisit their choice. These values are similar to those of married adults in the U.S. overall. The study appears in the March edition of Mayo Clinic Proceedings.
Consistent ...
Proximity to coal-tar-sealed pavement raises risk of cancer, study finds
2013-03-28
WACO, Texas (March 28, 2013)- People living near asphalt pavement sealed with coal tar have an elevated risk of cancer, according to a study in the journal Environmental Science and Technology. Much of this calculated excess risk results from exposures in children, age six or younger, to polycyclic aromatic hydrocarbons (PAHs) from the sealant.
"The increased cancer risk associated with coal-tar-sealed asphalt (CSA) likely affects a large number of people in the U.S. Our results indicate that the presence of coal-tar-based pavement sealants is associated with significant ...
Common gene variants explain 42 percent of antidepressant response
2013-03-28
Philadelphia, PA, March 28, 2013 – Antidepressants are commonly prescribed for the treatment of depression, but many individuals do not experience symptom relief from treatment. The National Institute of Mental Health's STAR*D study, the largest and longest study ever conducted to evaluate depression treatment, found that only approximately one-third of patients responded within their initial medication trial and approximately one-third of patients did not have an adequate clinical response after being treated with several different medications. Thus, identifying predictors ...
Wilderness therapy programs less risky than daily life, UNH research finds
2013-03-28
DURHAM, N.H. – Adolescents participating in wilderness and adventure therapy programs are at significantly less risk of injury than those playing football and are three times less likely to visit the emergency room for an injury than if they were at home, a new study by University of New Hampshire researchers finds. These findings, based on an analysis of risk management data from 12 programs providing outdoor behavioral healthcare in 2011, were reported in the latest issue of the Journal of Therapeutic Schools and Programs.
"After 'does this program work?', the question ...
Brain scans might predict future criminal behavior
2013-03-28
ALBUQUERQUE, NM and DURHAM, NC--A new study conducted by The Mind Research Network in Albuquerque, N.M., shows that neuroimaging data can predict the likelihood of whether a criminal will reoffend following release from prison.
The paper, which is to be published in the Proceedings of the National Academy of Sciences, studied impulsive and antisocial behavior and centered on the anterior cingulate cortex (ACC), a portion of the brain that deals with regulating behavior and impulsivity.
You can view the paper by clicking here: http://www.pnas.org/cgi/doi/10.1073/pnas.1219302110.
The ...
Cell reprogramming during liver regeneration
2013-03-28
PHILADELPHIA — During embryonic development, animals generate many different types of cells, each with a distinct function and identity.
"Although the identities of these cells remain stable under normal conditions, some cells can be persuaded to take on new identities, through reprogramming," says Ben Stanger, MD, PhD, assistant professor of Medicine in the Division of Gastroenterology at the Perelman School of Medicine, University of Pennsylvania.
Researchers have been able to reprogram cells experimentally, but few have shown that cells can change their identities ...