PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Making do with more: Joint BioEnergy Institute researchers engineer plant cell walls to boost sugar yields for biofuels

2013-03-29
(Press-News.org) When blessed with a resource in overwhelming abundance it's generally a good idea to make valuable use of that resource. Lignocellulosic biomass is the most abundant organic material on Earth. For thousands of years it has been used as animal feed, and for the past two centuries has been a staple of the paper industry. This abundant resource, however, could also supply the sugars needed to produce advanced biofuels that can supplement or replace fossil fuels, providing several key technical challenges are met. One of these challenges is finding ways to more cost-effectively extract those sugars. Major steps towards achieving this breakthrough are being taken by researchers at the U.S. Department of Energy (DOE)'s Joint BioEnergy Institute (JBEI).

"Through the tools of synthetic biology, we have engineered healthy plants whose lignocellulosic biomass can more easily be broken down into simple sugars for biofuels," says Dominique Loque, who directs the cell wall engineering program for JBEI's Feedstocks Division. "Working with the model plant, Arabidopsis, as a demonstration tool, we have genetically manipulated secondary cell walls to reduce the production of lignin while increasing the yield of fuel sugars."

JBEI is a scientific partnership led by Lawrence Berkeley National Laboratory (Berkeley Lab) whose mission is to advance the development of next generation biofuels that can provide the nation with clean, green and renewable transportation energy that will create jobs and boost the economy. Loque and his research group have focused on reducing the natural recalcitrance of plant cell walls to give up their sugars. Unlike the simple starch-based sugars in corn and other grains, the complex polysaccharide sugars in plant cell walls are locked within a robust aromatic polymer called lignin. Setting these sugars free from their lignin cage has required the use of expensive and environmentally harsh chemicals at high temperatures, a process that helps drive production costs of advance biofuels prohibitively high.

"By embedding polysaccharide polymers and reducing their extractability and accessibility to hydrolytic enzymes, lignin is the major contributor to cell wall recalcitrance," Loque says. "Unfortunately, most efforts to reduce lignin content during plant development have resulted in severe biomass yield reduction and a loss of integrity in vessels, a key tissue responsible for water and nutrient distribution from roots to the above-ground organs."

Lignin has also long posed problems for pulping and animal feed. To overcome the lignin problem, Loque and his colleagues rewired the regulation of lignin biosynthesis and created an artificial positive feedback loop (APFL) to enhance secondary cell wall biosynthesis in specific tissue. The idea was to reduce cell wall recalcitrance and boost polysaccharide content without impacting plant development.

"When we applied our APFL to Arabidopsis plants engineered so that lignin biosynthesis is disconnected from the fiber secondary cell wall regulatory network, we maintained the integrity of the vessels and were able to produce healthy plants with reduced lignin and enhanced polysaccharide deposition in the cell walls," Loque says. "After various pretreatments, these engineered plants exhibited improved sugar releases from enzymatic hydrolysis as compared to wild type plants. In other words we accumulated the good stuff – polysaccharides - without spoiling it with lignin."

Loque and his colleagues believe that the APFL strategy they used to enhance polysaccharide deposition in the fibers of their Arabidopsis plants could be rapidly implemented into other vascular plant species as well. This could increase cell wall content to the benefit of the pulping industry and forage production as well as for bioenergy applications. It could also be used to increase the strength of cereal straws, reducing crop lodging and seed losses. Since regulatory networks and other components of secondary cell wall biosynthesis have been highly conserved by evolution, the researchers feel their lignin rewiring strategy should also be readily transferrable to other plant species. They are currently developing new and even better versions of these strategies.

"We now know that we can significantly re-engineer plant cell walls as long as we maintain the integrity of vessels and other key tissues," Loque says.



INFORMATION:



A paper describing this research in detail has been published in Plant Biotechnology Journal. The paper is titled "Engineering secondary cell wall deposition in plants." Loque is the corresponding author. Co-authors are Fan Yang, Prajakta Mitra, Ling Zhang, Lina Prak, Yves Verhertbruggen, Jin-Sun Kim, Lan Sun, Kejian Zheng, Kexuan Tang, Manfred Auer and Henrik Scheller.

This research was supported by the DOE Office of Science.

JBEI is one of three Bioenergy Research Centers established by the DOE's Office of Science in 2007. It is a scientific partnership led by Berkeley Lab and includes the Sandia National Laboratories, the University of California campuses of Berkeley and Davis, the Carnegie Institution for Science, the Pacific Northwest National Laboratory, and the Lawrence Livermore National Laboratory. DOE's Bioenergy Research Centers support multidisciplinary, multi-institutional research teams pursuing the fundamental scientific breakthroughs needed to make production of cellulosic biofuels, or biofuels from nonfood plant fiber, cost-effective on a national scale.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the Unites States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov.



ELSE PRESS RELEASES FROM THIS DATE:

UGA researchers track down gene responsible for short stature of dwarf pearl millet

2013-03-29
Athens, Ga. – While pearl millet is a major food staple in some of the fastest growing regions on Earth, relatively little is known about the drought-hardy grain. Recently, plant geneticists at the University of Georgia successfully isolated the gene that creates dwarfed varieties of pearl millet. It is the first time a gene controlling an important agronomic trait has been isolated in the pearl millet genome. Their work appeared in the March edition of the journal G3: Genes, Genomics, Genetics. The dwarf varieties are economically important in the U.S., India and ...

KAIST develops a low-power 60 GHz radio frequency chip for mobile devices

2013-03-29
Daejeon, Republic of Korea, March 29, 2013 -- As the capacity of handheld devices increases to accommodate a greater number of functions, these devices have more memory, larger display screens, and the ability to play higher definition video files. If the users of mobile devices, including smartphones, tablet PCs, and notebooks, want to share or transfer data on one device with that of another device, a great deal of time and effort are needed. As a possible method for the speedy transmission of large data, researchers are studying the adoption of gigabits per second ...

Robot ants successfully mimic real colony behavior

2013-03-29
Scientists have successfully replicated the behaviour of a colony of ants on the move with the use of miniature robots, as reported in the journal PLOS Computational Biology. The researchers, based at the New Jersey Institute of Technology (Newark, USA) and at the Research Centre on Animal Cognition (Toulouse, France), aimed to discover how individual ants, when part of a moving colony, orient themselves in the labyrinthine pathways that stretch from their nest to various food sources. The study focused mainly on how Argentine ants behave and coordinate themselves in ...

Hispanics live longest, whites shortest among dialysis patients

2013-03-29
Highlights Among dialysis patients, Hispanics tend to live the longer than Blacks, who in turn live longer than whites. Determining the reasons for these racial and ethnic disparities may be important for improving care. As of 2010, there were approximately 410,000 dialysis patients in the United States. Washington, DC (March 28, 2013) — Among kidney failure patients on dialysis, Hispanics tend to live the longest and Whites the shortest, with Blacks' survival time in between these two, according to a study appearing in an upcoming issue of the Clinical Journal ...

Low vitamin D linked with lower kidney function after transplantation

2013-03-29
Highlights Low vitamin D levels measured at three months after kidney transplantation were linked with lower kidney function and increased kidney scarring at 12 months post-transplant. Other hormones involved with mineral metabolism were not predictors of kidney function or scarring after one year. Vitamin D deficiency is prevalent in patients with kidney failure. Washington, DC (March 28, 2013) — Vitamin D deficiency may decrease kidney function in transplant recipients, according to a study appearing in an upcoming issue of the Journal of the American Society ...

Discovery opens door to efficiently storing and reusing renewable energy

2013-03-29
Two University of Calgary researchers have developed a ground-breaking way to make new affordable and efficient catalysts for converting electricity into chemical energy. Their technology opens the door to homeowners and energy companies being able to easily store and reuse solar and wind power. Such energy is clean and renewable, but it's available only when the sun is shining or the wind is blowing. The research by Curtis Berlinguette and Simon Trudel, both in the chemistry department in the Faculty of Science, has just been published in Science – one of the world's ...

Light may recast copper as chemical industry 'holy grail'

2013-03-29
ANN ARBOR—Wouldn't it be convenient if you could reverse the rusting of your car by shining a bright light on it? It turns out that this concept works for undoing oxidation on copper nanoparticles, and it could lead to an environmentally friendly production process for an important industrial chemical, University of Michigan engineers have discovered. "We report a new physical phenomenon that has potentially significant practical implications," said Suljo Linic, an associate professor of chemical engineering, who led the study, which is published in the March 29 issue ...

Biological transistor enables computing within living cells, Stanford study says

2013-03-29
STANFORD, Calif. — When Charles Babbage prototyped the first computing machine in the 19th century, he imagined using mechanical gears and latches to control information. ENIAC, the first modern computer developed in the 1940s, used vacuum tubes and electricity. Today, computers use transistors made from highly engineered semiconducting materials to carry out their logical operations. And now a team of Stanford University bioengineers has taken computing beyond mechanics and electronics into the living realm of biology. In a paper to be published March 28 in Science, ...

Eating more fiber may lower risk of first-time stroke

2013-03-29
Eating more fiber may decrease your risk of first-time stroke, according to new research in the American Heart Association journal Stroke. Dietary fiber is the part of the plant that the body doesn't absorb during digestion. Fiber can be soluble, which means it dissolves in water, or insoluble. Previous research has shown that dietary fiber may help reduce risk factors for stroke, including high blood pressure and high blood levels of low-density lipoprotein (LDL) "bad" cholesterol. In the new study, researchers found that each seven-gram increase in total daily fiber ...

Innate immune system can kill HIV when a viral gene is deactivated

2013-03-29
Human cells have an intrinsic capacity to destroy HIV. However, the virus has evolved to contain a gene that blocks this ability. When this gene is removed from the virus, the innate human immune system destroys HIV by mutating it to the point where it can no longer survive. This phenomenon has been shown in test tube laboratory experiments, but now researchers at the University of North Carolina School of Medicine have demonstrated that the same phenomenon occurs in a humanized mouse model, suggesting a promising new target for tackling the virus, which has killed nearly ...

LAST 30 PRESS RELEASES:

Hormone therapy reshapes the skeleton in transgender individuals who previously blocked puberty

Evaluating performance and agreement of coronary heart disease polygenic risk scores

Heart failure in zero gravity— external constraint and cardiac hemodynamics

Amid record year for dengue infections, new study finds climate change responsible for 19% of today’s rising dengue burden

New study finds air pollution increases inflammation primarily in patients with heart disease

AI finds undiagnosed liver disease in early stages

The American Society of Tropical Medicine and Hygiene and the Bill & Melinda Gates Foundation announce new research fellowship in malaria genomics in honor of professor Dominic Kwiatkowski

Excessive screen time linked to early puberty and accelerated bone growth

First nationwide study discovers link between delayed puberty in boys and increased hospital visits

Traditional Mayan practices have long promoted unique levels of family harmony. But what effect is globalization having?

New microfluidic device reveals how the shape of a tumour can predict a cancer’s aggressiveness

Speech Accessibility Project partners with The Matthew Foundation, Massachusetts Down Syndrome Congress

Mass General Brigham researchers find too much sitting hurts the heart

New study shows how salmonella tricks gut defenses to cause infection

Study challenges assumptions about how tuberculosis bacteria grow

NASA Goddard Lidar team receives Center Innovation Award for Advancements

Can AI improve plant-based meats?

How microbes create the most toxic form of mercury

‘Walk this Way’: FSU researchers’ model explains how ants create trails to multiple food sources

A new CNIC study describes a mechanism whereby cells respond to mechanical signals from their surroundings

Study uncovers earliest evidence of humans using fire to shape the landscape of Tasmania

Researchers uncover Achilles heel of antibiotic-resistant bacteria

Scientists uncover earliest evidence of fire use to manage Tasmanian landscape

Interpreting population mean treatment effects in the Kansas City Cardiomyopathy Questionnaire

Targeting carbohydrate metabolism in colorectal cancer: Synergy of therapies

Stress makes mice’s memories less specific

Research finds no significant negative impact of repealing a Depression-era law allowing companies to pay workers with disabilities below minimum wage

Resilience index needed to keep us within planet’s ‘safe operating space’

How stress is fundamentally changing our memories

Time in nature benefits children with mental health difficulties: study

[Press-News.org] Making do with more: Joint BioEnergy Institute researchers engineer plant cell walls to boost sugar yields for biofuels