(Press-News.org) WASHINGTON, DC (April 9, 2013)—Researchers at Fox Chase Cancer Center have identified a host of small molecules critical to metabolism in cells of triple-negative breast cancer—one of the least understood groups of breast cancer. These molecules, called metabolites, include key players in energy regulation and lipid synthesis. They could help pave the way for helping researchers differentiate among different forms of the disease and ultimately point to new targets for treatment.
Jeffrey Peterson, PhD, a cancer biologist at Fox Chase, led the new studies, which also included researchers from Berlin-based Metanomics Health GmbH, a company specializing in metabolic profiling. Peterson will present the new findings at the AACR Annual Meeting 2013.
"There's tremendous excitement in the cancer field for the possibility of manipulating metabolism for therapeutic benefit," Peterson says.
Patients with triple-negative breast cancer constitute about 15 to 20 percent of all breast cancer cases, though incidence is disproportionately higher among young and African-American women. In triple-negative breast cancer, tumor cells lack receptors for two hormones—progesterone and estrogen—and a protein called HER2/neu. This type of cancer is notoriously difficult to treat and does not respond to some of the most effective treatments available for other types of breast cancer, like trastuzumab, which interferes with the HER2 receptor in HER2+ breast cancer, or endocrine therapies like tamoxifen.
Triple-negative breast cancer is not one well-defined disease. It's a large group of diseases that all lack the three receptors but may differ from each other in critical ways, from individual molecules all the way up to clinical prognosis and treatment options. Peterson says that cataloging the small molecules involved in cellular metabolism may help researchers differentiate among these different cancers lacking the three receptors.
"One of our hopes is to understand how this heterogeneous disease can be classified into subtypes," says Peterson. "We'd like to be able to define each subtype and a biomarker for each of those subtypes, based on the specific metabolites altered in that subtype."
Like healthy cells, tumor cells take food from the blood and turn it into energy, but their metabolic processes differ from those of healthy cells. In recent years scientists have begun to try to find ways to exploit these differences to selectively kill cancer cells, with the ultimate goal of developing new therapies. Peterson and his colleagues used cutting edge technology, including liquid chromatography-mass spectrometry, to survey the amounts of a wide range of metabolites in cells from nine widely-used cell lines of triple-negative breast cancer. They also zoomed in to study particular, targeted metabolites more closely. Broad metabolic profiling is new technology, and Peterson and his colleagues are among the first teams of researchers to apply it to the study of triple-negative disease.
They looked at both the metabolic "footprints" and "fingerprints" of the cells. The metabolic "footprint" includes the metabolites that go in to a cell from the surrounding media — or come out the other end of the process. The metabolic "fingerprint" shows all the molecules that work inside the cell during metabolic processes.
"We basically remove all the cells from the media, and then extract all of their small metabolites(less than 1500 dalton) and analyze those," Peterson says.
He says this catalog of metabolites from these cell lines is a good first step toward using metabolic markers to better understand the disease. Since triple-negative breast cancer is heterogeneous, the next step, he says, is to replicate the study in other cell lines and validate potential biomarkers.
This study grew out of another ongoing project by Peterson and his team. He was the lead author on a paper, published in the journal Nature Biotechnology in 2011, introducing a new technique to study the action of kinases—which are a class of enzymes that control cellular metabolism. Once that tool was developed, he decided to apply it to the poorly understood triple-negative breast cancer. In another study he's presenting at the AACR Annual Meeting 2013, Peterson and colleagues show how this technique can be used to identify small molecules that block the kinases important to the growth of triple-negative disease.
"Those small molecules may be the starting point for new therapies," he says. Ultimately, he says, he'd like to combine the metabolite and kinase studies to develop targeted therapies that stymy the metabolism of cancer cells.
###
Co-authors on the study include Fox Chase post-doctoral fellows Alexander Beatty and Lauren Fink; Alexander Strigun, Ulrike Rennefahrt, and Oliver Schmitz from Metanomics GmbH in Berlin; and Hajo Schiewe, Niels Moeller, Patricia Ruiz Noppinger, and Regina Reszka from Metanomics Health GmbH in Berlin.
Fox Chase Cancer Center, part of Temple University Health System, is one of the leading cancer research and treatment centers in the United States. Founded in 1904 in Philadelphia as one of the nation's first cancer hospitals, Fox Chase also was among the first institutions to receive the National Cancer Institute's prestigious comprehensive cancer center designation in 1974. Fox Chase researchers have won the highest awards in their fields, including two Nobel Prizes. Fox Chase physicians are routinely recognized in national rankings, and the Center's nursing program has achieved Magnet status for excellence three consecutive times. Fox Chase conducts a broad array of nationally competitive basic, translational, and clinical research and oversees programs in cancer prevention, detection, survivorship, and community outreach. For more information, call 1-888-FOX-CHASE (1-888-369-2427) or visit http://www.foxchase.org. END
Researchers identify critical metabolic alterations in triple-negative breast cancer cells
2013-04-10
ELSE PRESS RELEASES FROM THIS DATE:
New technology spots drugs' early impact on cancer
2013-04-10
WASHINGTON, DC (April 9, 2013)—A new preclinical technology enables researchers to quickly determine if a particular treatment is effective against gastrointestinal stromal tumors (GISTs), providing a boost to animal research and possibly patient care, according to new findings presented by Fox Chase Cancer Center at the AACR Annual Meeting 2013 on Tuesday, April 9.
The advantage of the tool, explains study author Lori Rink, PhD, assistant research professor at Fox Chase, is that it tells researchers if a particular compound is killing tumor cells in mice as early as ...
Research suggests new approach for spinal muscular atrophy
2013-04-10
PROVIDENCE, R.I. [Brown University] — There is no specific drug to treat spinal muscular atrophy (SMA), a family of motor neuron diseases that in its most severe form is the leading genetic cause of infant death in the United States and affects one in 6,000 people overall. But a new multispecies study involving a drug that treats amyotrophic lateral sclerosis (ALS) has pinpointed a mechanism of SMA that drug developers might be able to exploit for a new therapy.
The research, published in the Journal of Neuroscience, reports that the drug Riluzole advanced neural cell ...
Manipulating calcium accumulation in blood vessels may provide a new way to treat heart disease
2013-04-10
Hardening of the arteries, or atherosclerosis, is the primary cause of heart disease. It is caused by calcium accumulation in the blood vessels, which leads to arteries becoming narrow and stiff, obstructing blood flow and leading to heart complications. Although many risk factors for atherosclerosis have been identified, the cause is not known and there is currently no way to reverse it once it sets in. In a new study published 9th April in the open access journal PLOS Biology, researchers have characterized the cells responsible for driving this calcium build-up in vessel ...
Bean leaves can trap bedbugs, researchers find
2013-04-10
Irvine, Calif. – Inspired by a traditional Balkan bedbug remedy, researchers have documented how microscopic hairs on kidney bean leaves effectively stab and trap the biting insects, according to findings published online today in the Journal of the Royal Society Interface. Scientists at UC Irvine and the University of Kentucky are now developing materials that mimic the geometry of the leaves.
Bedbugs have made a dramatic comeback in the U.S. in recent years, infesting everything from homes and hotels to schools, movie theaters and hospitals. Although not known to transmit ...
New gene associated with almost doubled Alzheimer's risk in African-Americans
2013-04-10
NEW YORK – African-Americans with a variant of the ABCA7 gene have almost double the risk of developing late-onset Alzheimer's disease compared with African-Americans who lack the variant. The largest genome-wide search for Alzheimer's genes in the African-American community, the study was undertaken by the Alzheimer's Disease Genetics Consortium and led by neurologists from Columbia University Medical Center. It will be published in the April 10 issue of the Journal of the American Medical Association. The study was primarily funded by the National Institutes of Health ...
Genes linked with AD among African-Americans and individuals of European ancestry
2013-04-10
In a meta-analysis of data from nearly 6,000 African Americans, Alzheimer disease was significantly associated with a gene that have been weakly associated with Alzheimer disease in individuals of European ancestry, although additional studies are needed to determine risk estimates specific for African Americans, according to a study in the April 10 issue of JAMA, a Genomics theme issue.
"Late-onset Alzheimer disease (LOAD) is the most common cause of dementia, increasing in frequency from 1 percent at age 65 years to more than 30 percent for people older than 80 years," ...
Genomics may help ID organisms in outbreaks of serious infectious disease
2013-04-10
Researchers have been able to reconstruct the genome sequence of an outbreak strain of Shiga-toxigenic Escherichia coli (STEC) using metagenomics (the direct sequencing of DNA extracted from microbiologically complex samples), according to a study in the April 10 issue of JAMA, a Genomics theme issue. The findings highlight the potential of this approach to identify and characterize bacterial pathogens directly from clinical specimens without laboratory culture.
"The outbreak of Shiga-toxigenic Escherichia coli, which struck Germany in May-June 2011, illustrated the ...
Genetic variants of heart disorder discovered in some cases of stillbirth
2013-04-10
In a molecular genetic evaluation involving 91 cases of intrauterine fetal death, mutations associated with susceptibility to long QT syndrome (LQTS; a heart disorder that increases the risk for an irregular heartbeat and other adverse events) were discovered in a small number of these cases, preliminary evidence that may provide insights into the mechanism of some intrauterine fetal deaths, according to a study in the April 10 issue of JAMA, a Genomics theme issue.
"Intrauterine fetal death is a major public health problem. About 1 million fetal deaths occur in the ...
Association between genetic mutation and risk of death for patients with thyroid cancer
2013-04-10
Presence of the genetic mutation BRAF V600E was significantly associated with increased cancer-related death among patients with papillary thyroid cancer (PTC); however, because overall mortality in PTC is low and the association was not independent of tumor characteristics, how to use this information to manage mortality risk in patients with PTC is unclear, according to a study in the April 10 issue of JAMA, a Genomics theme issue.
"Papillary thyroid cancer is the most common endocrine malignancy and accounts for 85 percent to 90 percent of all thyroid cancers," according ...
Treatment leads to near-normal life expectancy for people with HIV in South Africa
2013-04-10
In South Africa, people with HIV who start treatment with anti-AIDS drugs (antiretroviral therapy) have life expectancies around 80% of that of the general population provided that they start treatment before their CD4 count drops below 200 (cells per microliter), according to a study by South African researchers published in this week's PLOS Medicine.
These findings are encouraging and show that with long-term treatment, HIV can be managed as a chronic illness in middle- and low-income settings, and also suggest that the estimates used by life insurance companies and ...