(Press-News.org) This press release is available in German.
The craft of glassmaking extends way back in time. It was over five-thousand years ago when mankind learned how to make glass. Even prior to this discovery, humans had been using naturally occurring glass for tool making. Despite this long and rich history and widespread use of glass, surprisingly little is known about the interplay between the mechanical properties of glasses and their inner structures. For the first time, researchers from Amsterdam University (The Netherlands) and DESY have now monitored subtle structural changes in a glass made from microscopic silica spheres, which they exposed to shear stress. Using a unique experimental setup at DESY's PETRA III X-ray source, the scientists discovered coexisting structural states in the glass and related them to its flow behavior. The research was published in the journal "Scientific Reports" (DOI:10.1038/srep01631).
Glasses are substances that can transition from a fluid state into a non-fluid glassy state. Unlike water, which freezes from a fluid into an ordered solid, the glassy phase retains a fluid-like structure with little order. Nevertheless, the material becomes highly viscous or even hard in the glassy state. Numerous other materials, including metallic alloys, polymers, and colloids, exhibit a liquid-glass transition. "Toothpaste, for instance, behaves similarly to glass, and so do foams, gels, and crèmes," says Dmitry Denisov, the study's first author from Peter Schall's group at Amsterdam University.
Model for more complex systems
In their study, Denisov and his colleagues prepared a glass from silicon dioxide, or silica. They added silica spheres that were a mere fifty-millionths of a millimeter in diameter to water. Much like fat particles in milk, the spheres are dispersed throughout the water, forming what is known as a colloid. When the spheres make up 58% of the entire volume, the dispersion's motion arrests – the colloid is in its glassy phase. For smaller volume fractions, the colloid remains in its liquid state. "Our spherical silica beads all have approximately the same diameter and the glass can be mathematically described rather easily," Denisov explains. "Hence, our system is a good starting point for modeling more complex systems with a liquid-glass transition."
The researchers were particularly interested in studying a phenomenon termed "shear banding". When they shear the glass by moving its horizontal layers parallel to one another, the stress response in the glass is divided into two regions, or bands, in which particles move with different speeds. "Shear banding has been known for a long time. The different bands can be made visible with confocal microscopy, and mechanical measurements show that something happens in the sample," says Denisov. "However, when we examined the interactions between particles in the different bands, we found the interactions to be the same. In fact, the structural differences between the two bands are so small that people initially thought they did not exist." To prove otherwise, the research team turned to a more sensitive method.
Unique experimental setup
At PETRA's experimental station P10, the researchers filled their sample between two horizontal plates. One of the plates was stationary while the other was rotated to shear the sample. With this setup, called a rheometer, the scientists tracked the glass' mechanical response, including changes in its viscosity. Simultaneously, PETRA's intense X-ray beam traveled through the sample, examining its inner structure. When X-rays scatter off particles inside a sample, they form a characteristic scattering pattern behind it, from which researchers can gain knowledge of the sample's structural order and the average particle-particle distances. "When we altered the shear rate in our experiment, we were able to see how the average distance between silica spheres in the glass varied," says DESY scientist Bernd Struth. "These structural changes have never been seen before."
Key to the experimentalists' success was the unique geometry of the setup, which Struth designed together with DESY engineer Daniel Messner. The PETRA lightsource emits X-rays in the horizontal plane. However, liquid samples have to be probed vertically, since they have to be placed horizontally in order to prevent them from dripping out of the setup. X-rays are not easily redirected by a mirror, but a unique optical element deflects the beam so that it traverses the sample in a vertical direction. "The structural changes in the glass are very small," Struth points out. "We can only measure them precisely when we average over a small amount of sample, which is only achievable in our geometry."
The researchers determined that shear stress in the colloidal glass results in a higher structural order and an increased vertical distance between particles. Thereby, layers of the suspension glide along each other with more ease and, thus, shear flow in the sample is facilitated. "Normally, you would expect the shear stress in the sample to increase with the applied shear rate," Struth says. In fact, this is what the researchers observed when they started rotating the rheometer's plate faster and faster. "Above a certain shear rate, however, the mechanical response of the glass no longer changes. When we continue increasing the shear rate, the shear stress remains constant until we reach a second distinct shear rate, above which the stress becomes larger again." The explanation for the region of constant stress is shear banding. "In this region, two bands with different velocities and viscosities coexist," explains Denisov. "The bands change dynamically with the shear rate, but when we measure the shear stress in the sample, averaged over the two bands, the stress is constant."
Small changes, big effect
However, what exactly happens structurally in the shear banding region? "The structural parameters that we obtained from X-ray scattering correlate with the mechanical observations. The order and the average particle-particle distance in the two bands are different, suggesting that two different structures coexist," Denisov says. "Previous studies indicated that the structure may be the same in the different bands. We proved that this is not the case." Since the observed structural changes are very small, they have not been resolved in earlier studies.
In general, the researchers established that small structural variations in the colloid glass have a large impact on its flow behavior. For the smallest shear rate applied in their experiment, the viscosity of the glass was ten thousand times larger than the viscosity at the largest shear rate. In contrast, the observed structural change over the same range was only less than three percent. "Small changes in the glass structure on the microscopic scale correspond to large changes in the mechanical properties on the macroscopic scale," Denisov summarizes.
"Our methodology enabled us to observe structural modifications in a glassy state that we know relatively little about," Struth emphasizes. "The new data can be used in simulations that will improve our understanding of such systems." Given the variety of systems with a liquid-glass transition and the widespread use of glasses in human culture, gaining insights into the intimate link between structure and flow behavior of glasses is an exciting perspective.
###
Deutsches Elektronen-Synchrotron DESY is the leading German accelerator centre and one of the leading in the world. The DESY institutes in Hamburg and Zeuthen near Berlin develop, build and operate large particle accelerators to investigate the structure of matter. DESY conducts research in the fields of photon science and particle physics – this combination is unique in Europe.
Reference:
"Resolving structural modifications of colloidal glasses by combining x-ray scattering and rheology"; Denisov, D., Dang, M.T., Struth, B., Wegdam, G. & Schall, P.; "Scientific Reports" (2013; 3, 1631); DOI: 10.1038/srep01631 END
X-rays reveal coexisting structures in glass
PETRA establish missing link between mechanical and structural properties of glass
2013-04-10
ELSE PRESS RELEASES FROM THIS DATE:
Eating solid food early sets marmosets on path to obesity
2013-04-10
SAN ANTONIO (April 10, 2013) — Baby marmoset monkeys that began eating solid food earlier than their peers were significantly more likely to be obese at 1 year of age, scientists at The University of Texas Health Science Center San Antonio and the Smithsonian Conservation Biology Institute found.
This early life obesity resulted in metabolic damage such as insulin resistance and poor blood sugar control, a companion study showed.
Marmosets on track for obesity appeared to be more efficient in their feeding behavior. "Although all animals consumed the same amount of ...
The beat goes on: Modeling the human heart
2013-04-10
Computational models of the human heart can be very useful in studying not just the basic mechanisms of heart function, but also to analyze the heart in a diseased state, and come up with methods for diagnosis and therapy.
Dr. Natalia Trayanova's Computational Cardiology Lab at the Johns Hopkins University is doing just that—her group uses mathematical models to look at cardiac function and dysfunction, examining the mechanisms behind disorders such as cardiac arrhythmias and pump dysfunction.
In a plenary lecture at the SIAM Conference on Computational Science and ...
Effect of medication is affected by copies of genetic information
2013-04-10
The results may help to explain why certain medications have strong side effects on sperm and eggs, and why certain organisms remain unaffected by environmental changes. This is shown by studies that researchers from the University of Gothenburg, together with researchers from Norway and France, are now publishing in the journal PLOS Genetics.
All cells in our bodies contain copies of the genetic information. However, different cells contain different numbers of the complete genetic information. Normal human cells usually contain two copies of the genetic information, ...
In an economic crash, public health improves
2013-04-10
MAYWOOD, Il. – The economic crash in Cuba following the fall of the Soviet Union has provided researchers with a unique natural experiment on obesity, diabetes and heart disease.
In the early 1990s, shortages of food and gasoline forced Cubans to eat less and do more walking and cycling. Adults lost, on average, 9 to 11 pounds, and type 2 diabetes and cardiovascular disease dropped sharply.
But after the economy began a slow but steady recovery, adults gradually gained back the weight they had lost, and then some. This weight gain was accompanied by a 116 percent increase ...
Penn research shows that young children have grammar and chimpanzees don't
2013-04-10
A new study from the University of Pennsylvania has shown that children as young as 2 understand basic grammar rules when they first learn to speak and are not simply imitating adults.
The study also applied the same statistical analysis on data from one of the most famous animal language-acquisition experiments — Project Nim — and showed that Nim Chimpsky, a chimpanzee who was taught sign language over the course of many years, never grasped rules like those in a 2-year-old's grammar.
The study was conducted by Charles Yang, a professor of linguistics in the School ...
Researchers develop tool to assist areas of infectious disease outbreaks
2013-04-10
Exit-screening at 36 airports would have assessed all air travelers at risk of transporting H1N1 out of Mexico at start of 2009 pandemic
Screening at 99 per cent of the world's international airports could have been forgone with negligible missed opportunities to prevent or delay the spread of disease
Screening at just eight airports worldwide would have led to the assessment of 90 per cent of all at-risk air travelers
TORONTO, April 10, 2013—Researchers have developed a simple new tool to help governments worldwide decide whether to screen airplane passengers leaving ...
Research enables fishermen to harvest lucrative shellfish on Georges Bank
2013-04-10
Combined research efforts by scientists involved in the Gulf of Maine Toxicity (GOMTOX) project, funded by NOAA's Ecology and Oceanography of Harmful Algal Blooms (ECOHAB) program, and administered by the National Centers for Coastal Ocean Science (NCCOS), have led to enhanced understanding of toxic algal blooms on Georges Bank. This new information, coupled with an at-sea and dockside testing protocol developed through collaboration between GOMTOX and U.S. Food and Drug Administration (FDA) investigators, has allowed fishermen to harvest ocean quahogs and surf clams ...
LSUHSC research reveals Rx target for HPV, Hep C and related cancers
2013-04-10
New Orleans, LA – New discoveries by a team of scientists at LSU Health Sciences Center New Orleans for the first time reveal the inner workings of a master regulator that controls functions as diverse as the ability of nerve cells to "rewire" themselves in response to external stimuli and the mechanism by which certain viruses hijack normal cellular processes to facilitate their replication that can ultimately lead to cancer. The research will be published in the April 12, 2013 issue of the Journal of Biological Chemistry.
The complex genetic programs controlling the ...
New cutting-edge cell research will lead to safer medical experiments on humans
2013-04-10
In almost 90 per cent of cases, novel drugs tested on humans by pharmaceutical companies do not work as intended and must be scrapped. Often the drugs do not work, while at worst, test subjects die.
New research from the University of Southern Denmark now shows that this number can be reduced. The secret is to test the drug on cells grown as 3D structures.
In 1993, five out of 15 liver patients who participated in a medical trial following the American Federal Drug Administration's (FDA's) instructions died. The patients had been treated with the substance fialuridin ...
War on bugs: University of Cincinnati research could lead to better bed bug control
2013-04-10
As if trapped in a never-ending B movie about evil invaders, Cincinnatians have been tormented by a six-legged scourge for years. To the chagrin of many throughout the Queen City, this monster isn't an actor in a rubber alien costume; it's the real thing – Cimex lectularius, better known as the common bed bug.
The tiny, bloodsucking arthropods have burrowed so deeply and so broadly into the cracks, crevices and cushions of Greater Cincinnati's households, they've literally given the city an itch it can't scratch enough to make it go away.
But there's hope. Regina Baucom, ...
LAST 30 PRESS RELEASES:
Walking, moving more may lower risk of cardiovascular death for women with cancer history
Intracortical neural interfaces: Advancing technologies for freely moving animals
Post-LLM era: New horizons for AI with knowledge, collaboration, and co-evolution
“Sloshing” from celestial collisions solves mystery of how galactic clusters stay hot
Children poisoned by the synthetic opioid, fentanyl, has risen in the U.S. – eight years of national data shows
USC researchers observe mice may have a form of first aid
VUMC to develop AI technology for therapeutic antibody discovery
Unlocking the hidden proteome: The role of coding circular RNA in cancer
Advancing lung cancer treatment: Understanding the differences between LUAD and LUSC
Study reveals widening heart disease disparities in the US
The role of ubiquitination in cancer stem cell regulation
New insights into LSD1: a key regulator in disease pathogenesis
Vanderbilt lung transplant establishes new record
Revolutionizing cancer treatment: targeting EZH2 for a new era of precision medicine
Metasurface technology offers a compact way to generate multiphoton entanglement
Effort seeks to increase cancer-gene testing in primary care
Acoustofluidics-based method facilitates intracellular nanoparticle delivery
Sulfur bacteria team up to break down organic substances in the seabed
Stretching spider silk makes it stronger
Earth's orbital rhythms link timing of giant eruptions and climate change
Ammonia build-up kills liver cells but can be prevented using existing drug
New technical guidelines pave the way for widespread adoption of methane-reducing feed additives in dairy and livestock
Eradivir announces Phase 2 human challenge study of EV25 in healthy adults infected with influenza
New study finds that tooth size in Otaria byronia reflects historical shifts in population abundance
nTIDE March 2025 Jobs Report: Employment rate for people with disabilities holds steady at new plateau, despite February dip
Breakthrough cardiac regeneration research offers hope for the treatment of ischemic heart failure
Fluoride in drinking water is associated with impaired childhood cognition
New composite structure boosts polypropylene’s low-temperature toughness
While most Americans strongly support civics education in schools, partisan divide on DEI policies and free speech on college campuses remains
Revolutionizing surface science: Visualization of local dielectric properties of surfaces
[Press-News.org] X-rays reveal coexisting structures in glassPETRA establish missing link between mechanical and structural properties of glass