PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Spring cleaning in your brain: New stem cell research shows how important it is

Years of mouse research lead to discovery of how autophagy keeps neural stem cells ready to replace damaged brain and nerve cells

2013-04-10
(Press-News.org) ANN ARBOR, Mich. — Deep inside your brain, a legion of stem cells lies ready to turn into new brain and nerve cells whenever and wherever you need them most. While they wait, they keep themselves in a state of perpetual readiness – poised to become any type of nerve cell you might need as your cells age or get damaged.

Now, new research from scientists at the University of Michigan Medical School reveals a key way they do this: through a type of internal "spring cleaning" that both clears out garbage within the cells, and keeps them in their stem-cell state.

In a paper published online in Nature Neuroscience, the U-M team shows that a particular protein, called FIP200, governs this cleaning process in neural stem cells in mice. Without FIP200, these crucial stem cells suffer damage from their own waste products -- and their ability to turn into other types of cells diminishes.

It is the first time that this cellular self-cleaning process, called autophagy, has been shown to be important to neural stem cells.

The findings may help explain why aging brains and nervous systems are more prone to disease or permanent damage, as a slowing rate of self-cleaning autophagy hampers the body's ability to deploy stem cells to replace damaged or diseased cells. If the findings translate from mice to humans, the research could open up new avenues to prevention or treatment of neurological conditions.

In a related review article just published online in the journal Autophagy, the lead U-M scientist and colleagues from around the world discuss the growing evidence that autophagy is crucial to many types of tissue stem cells and embryonic stem cells as well as cancer stem cells.

As stem cell-based treatments continue to develop, the authors say, it will be increasingly important to understand the role of autophagy in preserving stem cells' health and ability to become different types of cells.

"The process of generating new neurons from neural stem cells, and the importance of that process, is pretty well understood, but the mechanism at the molecular level has not been clear," says Jun-Lin Guan, Ph.D., the senior author of the FIP200 paper and the organizing author of the autophagy and stem cells review article. "Here, we show that autophagy is crucial for maintenance of neural stem cells and differentiation, and show the mechanism by which it happens."

Through autophagy, he says, neural stem cells can regulate levels of reactive oxygen species – sometimes known as free radicals – that can build up in the low-oxygen environment of the brain regions where neural stem cells reside. Abnormally higher levels of ROS can cause neural stem cells to start differentiating.

Guan is a professor in the Molecular Medicine & Genetics division of the U-M Department of Internal Medicine, and in the Department of Cell & Developmental Biology.

A long path to discovery

The new discovery, made after 15 years of research with funding from the National Institutes of Health, shows the importance of investment in lab science – and the role of serendipity in research.

Guan has been studying the role of FIP200 -- whose full name is focal adhesion kinase family interacting protein of 200 kD – in cellular biology for more than a decade. Though he and his team knew it was important to cellular activity, they didn't have a particular disease connection in mind. Together with colleagues in Japan, they did demonstrate its importance to autophagy – a process whose importance to disease research continues to grow as scientists learn more about it.

Several years ago, Guan's team stumbled upon clues that FIP200 might be important in neural stem cells when studying an entirely different phenomenon. They were using FIP200-less mice as comparisons in a study, when an observant postdoctoral fellow noticed that the mice experienced rapid shrinkage of the brain regions where neural stem cells reside.

"That effect was more interesting than what we were actually intending to study," says Guan, as it suggested that without FIP200, something was causing damage to the home of neural stem cells that normally replace nerve cells during injury or aging.

In 2010, they worked with other U-M scientists to show FIP200's importance to another type of stem cell, those that generate blood cells. In that case, deleting the gene that encodes FIP200 leads to an increased proliferation and ultimate depletion of such cells, called hematopoietic stem cells.

But with neural stem cells, they report in the new paper, deleting the FIP200 gene led neural stem cells to die and ROS levels to rise. Only by giving the mice the antioxidant n-acetylcysteine could the scientists counteract the effects.

"It's clear that autophagy is going to be important in various types of stem cells," says Guan, pointing to the new paper in Autophagy that lays out what's currently known about the process in hematopoietic, neural, cancer, cardiac and mesenchymal (bone and connective tissue) stem cells.

Guan's own research is now exploring the downstream effects of defects in neural stem cell autophagy – for instance, how communication between neural stem cells and their niches suffers. The team is also looking at the role of autophagy in breast cancer stem cells, because of intriguing findings about the impact of FIP200 deletion on the activity of the p53 tumor suppressor gene, which is important in breast and other types of cancer. In addition, they will study the importance of p53 and p62, another key protein component for autophagy, to neural stem cell self-renewal and differentiation, in relation to FIP200.



INFORMATION:



The new Nature Neuroscience paper's first author is post-doctoral fellow Chenran Wang, Ph.D. Co-authors include Richard Chun-Chi Liang, Ph.D., who is now a postdoctoral research fellow in the U-M Department of Neurology, research lab member Christine Bian, and Yuan Zhu, Ph.D., an associate professor in Molecular Medicine & Genetics and Cell & Developmental Biology.

The research was supported by National Institute of General Medical Sciences grant GM052890.

References: Nature Neuroscience Advance Online Publication doi:10.1038/nn.3365

Autophagy, 9:6, 1-20; June 2013

Guan laboratory website: http://sitemaker.umich.edu/guanlaboratory/home

For more information on all types of stem cell research at U-M, visit: http://www.umich.edu/stemcell.



ELSE PRESS RELEASES FROM THIS DATE:

Some types of papilloma virus might prevent cervical cancer

2013-04-10
Certain types of papilloma virus might actually prevent cervical cancer, according to a new study by researchers from The University of Manchester. There are over 100 different types of human papilloma virus (HPV). Cervical cancer is known to be caused by infection with approximately 14 so-called "high-risk" types of this virus. Researchers from Manchester looked at the different types of HPV found in cervical smears and invasive cervical cancers from HIV positive and HIV negative women in Kenya. They found high numbers of a specific type of HPV (type 53) in normal cervical ...

IU study: Feelings of power can diffuse effects of negative stereotypes

2013-04-10
BLOOMINGTON, Ind. -- New research from social psychologists at Indiana University Bloomington suggests that feeling powerful might protect against the debilitating effects of negative stereotypes. "If you can make women feel powerful, then maybe you can protect them from the consequences of stereotype threat," IU social psychologist Katie Van Loo said. In new work, Van Loo and Robert Rydell, social psychologists in the Department of Psychological and Brain Sciences in the IU College of Arts and Sciences, brought the study of these two social forces -- power and stereotypes ...

Redesigned material could lead to lighter, faster electronics

2013-04-10
COLUMBUS, Ohio—The same material that formed the first primitive transistors more than 60 years ago can be modified in a new way to advance future electronics, according to a new study. Chemists at The Ohio State University have developed the technology for making a one-atom-thick sheet of germanium, and found that it conducts electrons more than ten times faster than silicon and five times faster than conventional germanium. The material's structure is closely related to that of graphene—a much-touted two-dimensional material comprised of single layers of carbon atoms. ...

UNC researchers engineer 'protein switch' to dissect role of cancer's key players

2013-04-10
CHAPEL HILL, N.C. – Researchers at the University of North Carolina at Chapel Hill School of Medicine have "rationally rewired" some of the cell's smallest components to create proteins that can be switched on or off by command. These "protein switches" can be used to interrogate the inner workings of each cell, helping scientists uncover the molecular mechanisms of human health and disease. In the first application of this approach, the UNC researchers showed how a protein called Src kinase influences the way cells extend and move, a previously unknown role that is consistent ...

Co-Q10 deficiency may relate to concern with statin drugs, higher risk of diabetes

2013-04-10
CORVALLIS, Ore. – A laboratory study has shown for the first time that coenzyme Q10 offsets the cellular changes that are linked to a side-effect of some statin drugs - an increased risk of adult-onset diabetes. Statins are some of the most widely prescribed drugs in the world, able to reduce LDL, or "bad" cholesterol levels, and the risk of heart attacks or other cardiovascular events. However, their role in raising the risk of diabetes has only been observed and studied in recent years. The possibility of thousands of statin-induced diabetics is a growing concern, ...

Forum tackles the rising costs, challenges and diminished outcomes associated with treating obese patients for orthopaedic conditions

2013-04-10
The obesity epidemic in America and its impact on musculoskeletal health, as well as related treatment outcomes and costs, was discussed during the AAOS Now forum, "Obesity, Orthopaedics and Outcomes," at the 2013 Annual Meeting of the American Academy of Orthopaedic Surgeons (AAOS) at McCormick Place in Chicago. "From 1960 to 2000, the rate of obesity more than doubled in the United States," said Frank B. Kelly, MD, AAOS Now editorial board member and forum moderator. "By 2010, more than 72 million of U.S. adults were obese, and no state had an obesity rate of less ...

New therapy for fragile X chromosome syndrome discovered

2013-04-10
This press release is available in Spanish. Researchers at the University of the Basque Country (UPV/EHU) and the Achucarro neurosciences centre have discovered a new therapy for the fragile X chromosome syndrome. This new therapy proposes the modulation of the cerebral endocannabinoid system in order to ameliorate the symptoms of the disease. "Clearly, a cure as such is not going to be achieved, as it involves a disease of genetic origin, but the fact that, by manipulating in a certain way at a cerebral level in order to obtain an improvement in the symptoms of the disease ...

Metagenomics used to identify organisms in outbreaks of serious infectious disease

2013-04-10
Researchers have been able to reconstruct the genome sequence of an outbreak strain of Shiga-toxigenic Escherichia coli (STEC), which caused over 50 deaths in Germany, using an approach known as metagenomics which bypasses the need for growing bacteria in the lab. An international team coordinated by Mark Pallen, Professor of Microbial Genomics at Warwick Medical School, was able to reconstruct the genome sequence through the direct sequencing of DNA extracted from microbiologically complex samples. The study, published in a genomics-themed issue of JAMA on 10 April, ...

1 in 5 seniors on risky meds; more in US South

2013-04-10
More than 1 in 5 seniors with Medicare Advantage plans received a prescription for a potentially harmful "high risk medication" in 2009, according to a newly published analysis by Brown University public health researchers. The questionable prescriptions were significantly more common in the Southeast region of the country, as well as among women and people living in relatively poor areas. The demographic trends in the analysis, based on Medicare data from more than 6 million patients, suggest that differences in the rates of prescription of about 110 medications deemed ...

X-rays reveal coexisting structures in glass

2013-04-10
This press release is available in German. The craft of glassmaking extends way back in time. It was over five-thousand years ago when mankind learned how to make glass. Even prior to this discovery, humans had been using naturally occurring glass for tool making. Despite this long and rich history and widespread use of glass, surprisingly little is known about the interplay between the mechanical properties of glasses and their inner structures. For the first time, researchers from Amsterdam University (The Netherlands) and DESY have now monitored subtle structural ...

LAST 30 PRESS RELEASES:

Megalodon’s body size and form uncover why certain aquatic vertebrates can achieve gigantism

A longer, sleeker super predator: Megalodon’s true form

Walking, moving more may lower risk of cardiovascular death for women with cancer history

Intracortical neural interfaces: Advancing technologies for freely moving animals

Post-LLM era: New horizons for AI with knowledge, collaboration, and co-evolution

“Sloshing” from celestial collisions solves mystery of how galactic clusters stay hot

Children poisoned by the synthetic opioid, fentanyl, has risen in the U.S. – eight years of national data shows

USC researchers observe mice may have a form of first aid

VUMC to develop AI technology for therapeutic antibody discovery

Unlocking the hidden proteome: The role of coding circular RNA in cancer

Advancing lung cancer treatment: Understanding the differences between LUAD and LUSC

Study reveals widening heart disease disparities in the US

The role of ubiquitination in cancer stem cell regulation

New insights into LSD1: a key regulator in disease pathogenesis

Vanderbilt lung transplant establishes new record

Revolutionizing cancer treatment: targeting EZH2 for a new era of precision medicine

Metasurface technology offers a compact way to generate multiphoton entanglement

Effort seeks to increase cancer-gene testing in primary care

Acoustofluidics-based method facilitates intracellular nanoparticle delivery

Sulfur bacteria team up to break down organic substances in the seabed

Stretching spider silk makes it stronger

Earth's orbital rhythms link timing of giant eruptions and climate change

Ammonia build-up kills liver cells but can be prevented using existing drug

New technical guidelines pave the way for widespread adoption of methane-reducing feed additives in dairy and livestock

Eradivir announces Phase 2 human challenge study of EV25 in healthy adults infected with influenza

New study finds that tooth size in Otaria byronia reflects historical shifts in population abundance

nTIDE March 2025 Jobs Report: Employment rate for people with disabilities holds steady at new plateau, despite February dip

Breakthrough cardiac regeneration research offers hope for the treatment of ischemic heart failure

Fluoride in drinking water is associated with impaired childhood cognition

New composite structure boosts polypropylene’s low-temperature toughness

[Press-News.org] Spring cleaning in your brain: New stem cell research shows how important it is
Years of mouse research lead to discovery of how autophagy keeps neural stem cells ready to replace damaged brain and nerve cells