(Press-News.org)
AUDIO:
Scientists at Washington University School of Medicine in St. Louis and the University of Illinois in Urbana-Champaign, developed a tiny, light-emitting device that can activate and control neurons in the...
Click here for more information.
Using a miniature electronic device implanted in the brain, scientists have tapped into the internal reward system of mice, prodding neurons to release dopamine, a chemical associated with pleasure.
The researchers, at Washington University School of Medicine in St. Louis and the University of Illinois at Urbana-Champaign, developed tiny devices, containing light emitting diodes (LEDs) the size of individual neurons. The devices activate brain cells with light. The scientists report their findings April 12 in the journal Science.
"This strategy should allow us to identify and map brain circuits involved in complex behaviors related to sleep, depression, addiction and anxiety," says co-principal investigator Michael R. Bruchas, PhD, assistant professor of anesthesiology at Washington University. "Understanding which populations of neurons are involved in these complex behaviors may allow us to target specific brain cells that malfunction in depression, pain, addiction and other disorders."
For the study, Washington University neuroscientists teamed with engineers at the University of Illinois to design microscale (LED) devices thinner than a human hair. This was the first application of the devices in optogenetics, an area of neuroscience that uses light to stimulate targeted pathways in the brain. The scientists implanted them into the brains of mice that had been genetically engineered so that some of their brain cells could be activated and controlled with light.
Although a number of important pathways in the brain can be studied with optogenetics, many neuroscientists have struggled with the engineering challenge of delivering light to precise locations deep in the brain. Most methods have tethered animals to lasers with fiber optic cables, limiting their movement and altering natural behaviors.
But with the new devices, the mice freely moved about and were able to explore a maze or scamper on a wheel. The electronic LEDs are housed in a tiny fiber implanted deep in the brain. That's important to the device's ability to activate the proper neurons, according to John A. Rogers, PhD, professor of materials science and engineering at the University of Illinois.
"You want to be able to deliver the light down into the depth of the brain," Rogers says. "We think we've come up with some powerful strategies that involve ultra-miniaturized devices that can deliver light signals deep into the brain and into other organs in the future."
Using light from the cellular-scale LEDs to stimulate dopamine-producing cells in the brain, the investigators taught the mice to poke their noses through a specific hole in a maze. Each time a mouse would poke its nose through the hole, that would trigger the system to wirelessly activate the LEDs in the implanted device, which then would emit light, causing neurons to release dopamine, a chemical related to the brain's natural reward system.
"We used the LED devices to activate networks of brain cells that are influenced by the things you would find rewarding in life, like sex or chocolate," says co-first author Jordan G. McCall, a neuroscience graduate student in Washington University's Division of Biology and Biomedical Sciences. "When the brain cells were activated to release dopamine, the mice quickly learned to poke their noses through the hole even though they didn't receive any food as a reward. They also developed an associated preference for the area near the hole, and they tended to hang around that part of the maze."
The researchers believe the LED implants may be useful in other types of neuroscience studies or may even be applied to different organs. Related devices already are being used to stimulate peripheral nerves for pain management. Other devices with LEDs of multiple colors may be able to activate and control several neural circuits at once. In addition to the tiny LEDs, the devices also carry miniaturized sensors for detecting temperature and electrical activity within the brain.
Bruchas and his colleagues already have begun other studies of mice, using the LED devices to manipulate neural circuits that are involved in social behaviors. This could help scientists better understand what goes on in the brain in disorders such as depression and anxiety.
"We believe these devices will allow us to study complex stress and social interaction behaviors," Bruchas explains. "This technology enables us to map neural circuits with respect to things like stress and pain much more effectively."
The wireless, microLED implant devices represent the combined efforts of Bruchas and Rogers. Last year, along with Robert W. Gereau IV, PhD, professor of anesthesiology, they were awarded an NIH Director's Transformative Research Project award to develop and conduct studies using novel device development and optogenetics, which involves activating or inhibiting brain cells with light.
INFORMATION:
Funding for this research comes from the National Institute of Neurological Disorders and Stroke (NINDS), the National Institute on Drug Abuse (NIDA) and the NIH Common Fund of the National Institutes of Health (NIH). Other funding comes from the McDonnell Center for Systems Neuroscience, a National Security Science and Engineering Faculty Fellowship of Energy, a US Department of Energy Division of Material Sciences Award, and the Materials Research Laboratory and Center for Microanalysis of Materials.
NIH grant numbers are R01 NS081707, R00DA025182.
Department of Energy grant numbers are DE-FG02-07ER46471 and DE-FG02-07ER46453.
Kim T, et al. Injectable, Cellular-scale optoelectronics with applications for wireless optogenetics. Science, vol. 340 (6129), April 12, 2013
Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.
Tiny wireless device shines light on mouse brain, generating reward
2013-04-12
ELSE PRESS RELEASES FROM THIS DATE:
Sediba's ribcage and feet were not suitable for running
2013-04-12
Researchers at Wits University in South Africa, including Peter Schmid from the University of Zurich, have described the anatomy of a single early hominin in six new studies. Australopithecus sediba was discovered near Johannesburg in 2008. The studies in Science demonstrate how our two million year old ancestor walked, chewed and moved.
The fossils discovered four years ago in Malapa near Johannesburg show a mixture of primitive features of australopiths and advanced features of later human species. The researchers led by Prof Lee Berger of Wits University are therefore ...
Self-medication in animals much more widespread than believed
2013-04-12
ANN ARBOR—It's been known for decades that animals such as chimpanzees seek out medicinal herbs to treat their diseases. But in recent years, the list of animal pharmacists has grown much longer, and it now appears that the practice of animal self-medication is a lot more widespread than previously thought, according to a University of Michigan ecologist and his colleagues.
Animals use medications to treat various ailments through both learned and innate behaviors. The fact that moths, ants and fruit flies are now known to self-medicate has profound implications for the ...
Scientists discover gene mutation that causes children to be born without spleen
2013-04-12
The spleen is rarely noticed, until it is missing. In children born without this organ, that doesn't happen until they become sick with life-threatening bacterial infections. An international team of researchers led by scientists from Rockefeller's St. Giles Laboratory of Human Genetics and Infectious Diseases has now identified the defective gene responsible for this rare disorder. The findings, reported today in Science Express, may lead to new diagnostic tests and raises new questions about the role of this gene in the body's protein-making machinery.
Medically known ...
Material screening method allows more precise control over stem cells
2013-04-12
MADISON — When it comes to delivering genes to living human tissue, the odds of success come down the molecule. The entire therapy — including the tools used to bring new genetic material into a cell — must have predictable effects.
Now, a new screening process will simplify non-viral transfection, providing a method researchers and clinicians use to find an optimal set of biomaterials to deliver genes to cells.
Developed by William Murphy, the Harvey D. Spangler professor of biomedical engineering at the University of Wisconsin-Madison, the method gives researchers ...
Cyclone Imelda turned the corner on NASA satellite imagery
2013-04-12
An area of low pressure moving toward Cyclone Imelda from the west has turned the storm to the south from its westward track, as NASA's Aqua satellite passed overhead and captured a visible and an infrared image of the powerful storm that showed the effects of wind shear.
NASA's Aqua satellite passed over Tropical Cyclone Imelda on April 11 at 0925 UTC (5:25 a.m. EDT). The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard Aqua captured a visible image that showed a well-developed Tropical Cyclone Imelda in the Southern Indian Ocean that has now turned ...
New research reveals how human ancestor walked, chewed, and moved
2013-04-12
A team of scientists has pieced together how the hominid Australopithecus sediba (Au. sediba) walked, chewed, and moved nearly two million years ago. Their research, which appears in six papers in the latest issue of the journal Science, also shows that Au. sediba had a notable feature that differed from that of modern humans—a functionally longer and more flexible lower back.
Together, the studies offer a comprehensive depiction of some of the most complete early human ancestral remains ever discovered.
Since its discovery in August 2008, the site of Malapa—located ...
Molecular techniques are man's new best friend in pet obesity research
2013-04-12
CHAMPAIGN, Ill. — According to the World Health Organization, more than two-thirds of Americans are overweight or obese. And it's not just humans who are packing on the pounds. Our furry companions are plagued by an obesity epidemic of their own. More than 50 percent of the dogs and cats in the United States are overweight or obese.
In a new paper on pet obesity in the Journal of Animal Science, University of Illinois professor of animal and nutritional sciences Kelly Swanson and his colleagues describe how nutrients and biological compounds in foods can affect gene expression ...
How Alzheimer's could occur
2013-04-12
A new hypothesis has been developed by researchers in Bochum on how Alzheimer's disease could occur. They analysed the interaction of the proteins FE65 and BLM that regulate cell division. In the cell culture model, they discovered spherical structures in the nucleus that contained FE65 and BLM. The interaction of the proteins triggered a wrong signal for cell division. This may explain the degeneration and death of nerve cells in Alzheimer's patients. The team led by Dr. Thorsten Müller and Prof. Dr. Katrin Marcus from the Department of Functional Proteomics in cooperation ...
NASA sees sun emit an M6.5 flare
2013-04-12
The M6.5 flare on the morning of April 11, 2013, was also associated with an Earth-directed coronal mass ejection (CME), another solar phenomenon that can send billions of tons of solar particles into space and can reach Earth one to three days later. CMEs can affect electronic systems in satellites and on the ground. Experimental NASA research models show that the CME began at 3:36 a.m. EDT on April 11, leaving the sun at over 600 miles per second.
Earth-directed CMEs can cause a space weather phenomenon called a geomagnetic storm, which occurs when they connect with ...
NASA satellite image sees Cyclone Victoria looking like a 'J' from space
2013-04-12
When NASA's Aqua satellite flew over Cyclone Victoria in the Southern Indian Ocean it captured a visible image of the storm and it appeared to look like the letter "J." A band of thunderstorms wrapping into the center from the east of low-level center of circulation extended north, creating the appearance of the letter.
NASA's Aqua satellite passed over Tropical Cyclone Victoria on April 11 at 0320 UTC (April 10 at 11:20 p.m. EDT). The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard Aqua captured the visible image that showed strong thunderstorms ...