PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Scientists map elusive 3-D structure of telomerase enzyme, key actor in cancer, aging

2013-04-12
(Press-News.org) Like finally seeing all the gears of a watch and how they work together, researchers from UCLA and UC Berkeley have, for the first time ever, solved the puzzle of how the various components of an entire telomerase enzyme complex fit together and function in a three-dimensional structure.

The creation of the first complete visual map of the telomerase enzyme, which is known to play a significant role in aging and most cancers, represents a breakthrough that could open up a host of new approaches to fighting disease, the researchers said.

"Everyone in the field wants to know what telomerase looks like, and there it was. I was so excited, I could hardly breathe," said Juli Feigon, a UCLA professor of chemistry and biochemistry and a senior author of the study. "We were the first to see it."

The scientists report the positions of each component of the enzyme relative to one another and the complete organization of the enzyme's active site. In addition, they demonstrate how the different components contribute to the enzyme's activity, uniquely correlating structure with biochemical function.

The research appears April 11 in the print edition of the journal Nature and is available online.

"We combined every single possible method we could get our hands on to solve this structure and used cutting-edge technological advances," said co-first author Jiansen Jiang, a researcher who works with Feigon and the study's co-senior author, Z. Hong Zhou, director of the Electron Imaging Center for Nanomachines at the California NanoSystems Institute at UCLA and a professor of microbiology, immunology and molecular genetics. "This breakthrough would not have been possible five years ago."

"We really had to figure out how everything fit together, like a puzzle," said co-first author Edward Miracco, a National Institutes of Health postdoctoral fellow in Feigon's laboratory. "When we started fitting in the high-resolution structures to the blob that emerged from electron microscopy, we realized that everything was fitting in and made sense with decades of past biochemistry research. The project just blossomed, and the blob became a masterpiece."

The telomerase enzyme is a mixture of components that unite inside our cells to maintain the protective regions at the ends of our chromosomes, which are called telomeres. Telomeres act like the plastic tips at the end of shoelaces, safeguarding important genetic information. But each time a cell divides, these telomeres shorten, like the slow-burning fuse of a time bomb. Eventually, the telomeres erode to a point that is no longer tolerable for cells, triggering the cell death that is a normal part of the aging process.

While most cells have relatively low levels of telomerase, 80 percent to 90 percent of cancer cells have abnormally high telomerase activity. This prevents telomeres from shortening and extends the life of these tumorigenic cells — a significant contributor to cancer progression.

The new discovery creates tremendous potential for pharmaceutical development that takes into account the way a drug and target molecule might interact, given the shape and chemistry of each component. Until now, designing a cancer-fighting drug that targeted telomerase was much like shooting an arrow to hit a bulls-eye while wearing a blindfold. With this complete visual map, the researchers are starting to remove that blindfold.

"Inhibiting telomerase won't hurt most healthy cells but is predicted to slow down the progression of a broad range of cancers," said Miracco. "Our structure can be used to guide targeted drug development to inhibit telomerase, and the model system we used may also be useful to screen candidate drugs for cancer therapy."

The researchers solved the structure of telomerase in Tetrahymena thermophila, the single-celled eukaryotic organism in which scientists first identified telomerase and telomeres, leading to the 2009 Nobel Prize in medicine or physiology. Research on Tetrahymena telomerase in the lab of co-senior author Kathleen Collins, a professor of molecular and cell biology at UC Berkeley, laid the genetic and biochemical groundwork for the structure to be solved.

"The success of this project was absolutely dependent on the collaboration among our research groups," said Feigon.

"At every step of this project, there were difficulties," she added. "We had so many technical hurdles to overcome, both in the electron microscopy and the biochemistry. Pretty much every problem we could have, we had, and yet at each stage these hurdles were overcome in an innovative way."

One of the biggest surprises, the researchers said, was the role of the protein p50, which acts as a hinge in Tetrahymena telomerase to allow dynamic movement within the complex; p50 was found to be an essential player in the enzyme's activity and in the recruitment of other proteins to join the complex.

"The beauty of this structure is that it opens up a whole new world of questions for us to answer," Feigon said. "The exact mechanism of how this complex interacts with the telomere is an active area of future research."

"The atmosphere and collaboration at UCLA really amazes me, and that is combined with some of the most advanced facilities around," Zhou said. "We have a highly advanced electron microscopy facility here at UCLA that even researchers without a strong background in electron microscopy can learn how to use and benefit from. This will be really useful as we move forward."

### This research was funded by the National Science Foundation and the National Institutes of Health. Equal contributions to the publication were made by co-first authors Jiang and Miracco, postdoctoral researchers at UCLA with Zhou and Feigon. Members of Kathleen Collins' UC Berkeley laboratory who contributed to this research included technician Kyungah Hong, postdoctoral researcher Barbara Eckert and former graduate researcher Bosun Min. Other co-authors included Henry Chan and Darian D. Cash, UCLA graduate student researchers in Feigon's laboratory.

UCLA is California's largest university, with an enrollment of more than 40,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer 337 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Six alumni and six faculty have been awarded the Nobel Prize.

For more news, visit the UCLA Newsroom and follow us on Twitter. END



ELSE PRESS RELEASES FROM THIS DATE:

Exercise or make dinner? Study finds adults trade one healthy act for another

2013-04-12
COLUMBUS, Ohio – American adults who prepare their own meals and exercise on the same day are likely spending more time on one of those activities at the expense of the other, a new study suggests. The research showed that a 10-minute increase in food preparation time was associated with a lower probability of exercising for 10 more minutes – for both men and women. The finding applied to single and married adults as well as parents and those who have no children. Researchers analyzed nationally available data on more than 112,000 American adults who had reported their ...

L-carnitine significantly improves patient outcomes following heart attack

2013-04-12
Rochester, MN, April 12, 2013 – L-carnitine significantly improves cardiac health in patients after a heart attack, say a multicenter team of investigators in a study published today in Mayo Clinic Proceedings. Their findings, based on analysis of key controlled trials, associate L-carnitine with significant reduction in death from all causes and a highly significant reduction in ventricular arrhythmias and anginal attacks following a heart attack, compared with placebo or control. Heart disease is the leading cause of death in the United States. Although many of the ...

Teenage smoking behavior influenced by friends' and parents' smoking habits

2013-04-12
LOS ANGELES – The company you keep in junior high school may have more influence on your smoking behavior than your high school friends, according to newly published research from the University of Southern California (USC). The study, which appears in the April 12 issue of the Journal of Adolescent Health, identifies how friends' and parental influence on cigarette smoking changes from junior high to high school. The research indicates that intervention targets to counteract friends' influence may have more of an effect in junior high than in high school, and that ...

CO2 removal can lower costs of climate protection

2013-04-12
According to the analysis, carbon dioxide removal could be used under certain requirements to alleviate the most costly components of mitigation, but it would not replace the bulk of actual emissions reductions. "Carbon dioxide removal from the atmosphere allows to separate emissions control from the time and location of the actual emissions. This flexibility can be important for climate protection," says lead-author Elmar Kriegler. "You don't have to prevent emissions in every factory or truck, but could for instance plant grasses that suck CO2 out of the air to grow ...

Disappearing nannies force parents to accept their duties

2013-04-12
Large helpers (nannies) in a cichlid fish allow the dominant male and female to reduce their personal contribution to their offspring and territory, according to new research published today in Functional Ecology. By removing the large helper for 30 days – which corresponds to one breeding cycle in this species – a team from the University of Bristol and the University of Bern (Switzerland) studied the investment strategies of the dominant pair and the survival of their brood, while checking for immigration of new helpers. Dr Rick Bruintjes, NERC Science & Business ...

Study proposes alternative way to explain life's complexity

2013-04-12
Durham, NC —Evolution skeptics argue that some biological structures, like the brain or the eye, are simply too complex for natural selection to explain. Biologists have proposed various ways that so-called 'irreducibly complex' structures could emerge incrementally over time, bit by bit. But a new study proposes an alternative route. Instead of starting from simpler precursors and becoming more intricate, say authors Dan McShea and Wim Hordijk, some structures could have evolved from complex beginnings that gradually grew simpler — an idea they dub "complexity by subtraction." ...

Clues to heart disease in unexpected places, Temple researchers discover

2013-04-12
(Philadelphia, PA) – A major factor in the advance of heart disease is the death of heart tissue, a process that a team of scientists at Temple University School of Medicine's (TUSM) Center for Translational Medicine think could be prevented with new medicines. Now, the researchers are one step closer to achieving that goal, thanks to their discovery of a key molecule in an unexpected place in heart cells – mitochondria, tiny energy factories that house the controls capable of setting off cells' self-destruct sequence. The study is the first to identify the molecule, ...

IFR scientists use the force to decode secrets of our gut

2013-04-12
A new technique based on atomic force microscopy was developed at the Institute of Food Research to help 'read' information encoded in the gut lining. The lining of our gut is an important barrier between the outside world and our bodies. Laid out, the gut lining would cover the area of a football pitch. It must let nutrients from our foods through, but prevent invasion by disease-causing bacteria, at the same time hosting the trillions of beneficial bacteria needed for proper digestion and immune function. At the forefront of the defensive system is a layer of mucus ...

Gene may help identify risk of Alzheimer's in African Americans, Mayo Clinic says

2013-04-12
JACKSONVILLE, Fla. — Researchers at Mayo Clinic in Florida participated in a nationwide study that found minor differences between genes that contribute to late-onset Alzheimer's disease in African-Americans and in Caucasians. The study, published April 10 in The Journal of the American Medical Association, was the first to look at the genetics of a large number of African-Americans diagnosed with this common form of Alzheimer's disease (1,968 patients) compared to 3,928 normal elderly African-American control participants. The Alzheimer's Disease Genetics Consortium ...

Secrets of bacterial slime revealed

2013-04-12
Newcastle University scientists have revealed the mechanism that causes a slime to form, making bacteria hard to shift and resistant to antibiotics. When under threat, some bacteria can shield themselves in a slimy protective layer, known as a biofilm. It is made up of communities of bacteria held together to protect themselves from attack. Biofilms cause dental plaque and sinusitis; in healthcare, biofilms can lead to life threatening and difficult to treat infections, particularly on medical implants such as catheters, heart valves, artificial hips and even breast ...

LAST 30 PRESS RELEASES:

Discovery: The great whale pee funnel

Team of computer engineers develops AI tool to make genetic research more comprehensive

Are volcanoes behind the oxygen we breathe?

The two faces of liquid water

The Biodiversity Data Journal launches its own data portal on GBIF

Do firefighters face a higher brain cancer risk associated with gene mutations caused by chemical exposure?

Less than half of parents think they have accurate information about bird flu

Common approaches for assessing business impact on biodiversity are powerful, but often insufficient for strategy design

Can a joke make science more trustworthy?

Hiring strategies

Growing consumption of the American eel may lead to it being critically endangered like its European counterpart

KIST develops high-performance sensor based on two-dimensional semiconductor

New study links sleep debt and night shifts to increased infection risk among nurses

Megalodon’s body size and form uncover why certain aquatic vertebrates can achieve gigantism

A longer, sleeker super predator: Megalodon’s true form

Walking, moving more may lower risk of cardiovascular death for women with cancer history

Intracortical neural interfaces: Advancing technologies for freely moving animals

Post-LLM era: New horizons for AI with knowledge, collaboration, and co-evolution

“Sloshing” from celestial collisions solves mystery of how galactic clusters stay hot

Children poisoned by the synthetic opioid, fentanyl, has risen in the U.S. – eight years of national data shows

USC researchers observe mice may have a form of first aid

VUMC to develop AI technology for therapeutic antibody discovery

Unlocking the hidden proteome: The role of coding circular RNA in cancer

Advancing lung cancer treatment: Understanding the differences between LUAD and LUSC

Study reveals widening heart disease disparities in the US

The role of ubiquitination in cancer stem cell regulation

New insights into LSD1: a key regulator in disease pathogenesis

Vanderbilt lung transplant establishes new record

Revolutionizing cancer treatment: targeting EZH2 for a new era of precision medicine

Metasurface technology offers a compact way to generate multiphoton entanglement

[Press-News.org] Scientists map elusive 3-D structure of telomerase enzyme, key actor in cancer, aging