(Press-News.org) Stem cells can be coaxed to grow into new bone or new cartilage better and faster when given the right molecular cues and room inside a water-loving gel, researchers at Case Western Reserve University show.
By creating a three-dimensional checkerboard—one with alternating highly connected and less connected spaces within the hydrogel—the team found adjusting the size of the micropattern could affect stem cell behaviors, such as proliferation and differentiation.
Inducing how and where stem cells grow—and into the right kind of cell in three dimensions—has proven a challenge to creating useful stem cell therapies. This technique holds promise for studying how physical, chemical and other influences affect cell behavior in three-dimensions, and, ultimately, as a method to grow tissues for regenerative medicine applications.
"We think that control over local biomaterial properties may allow us to guide the formation of complex tissues," said Eben Alsberg, an associate professor of Biomedical Engineering at Case Western Reserve. "With this system, we can regulate cell proliferation and cell-specific differentiation into, for example, bone-like or cartilage-like cells."
Oju Jeon, PhD, a postdoctoral researcher in Biomedical Engineering, pursued this work with Alsberg. Their work is described April 11, 2013 in the online edition of Advanced Functional Materials.
Hydrogels are hydrophilic three-dimensional networks of water-soluble polymers bonded, or crosslinked, to one another. Crosslinks increase rigidity and alter the porous structure inside the gel.
Alsberg and Jeon used a hydrogel of oxidized methacrylated alginate and an 8-arm poly(ethylene glycol) amine. A chemical reaction between the alginate and the poly(ethylene glycol) creates crosslinks that provide structure within the gel.
They tweaked the mix so that a second set of crosslinks forms when exposed to light. They used checkerboard masks to create patterns of alternating singly and doubly crosslinked spaces.
The spaces, which varied in size at 25, 50, 100 and 200 micrometers across, were evenly singly and doubly crosslinked.
Human stem cells isolated from fat tissue were encapsulated in the singly and doubly crosslinked regions. The doubly-crosslinked spaces are comparatively cluttered with structures. The cells grew into clusters in the singly-crosslinked regions, but remained mostly isolated in the doubly crosslinked regions.
The larger the spaces in the checkerboard, the larger the clusters grew.
Cells were cultivated in media that promote differentiation into either bone or cartilage.
In both the singly and doubly crosslinked spaces, stem cells increasingly differentiated according to the media composition as the space size increased. The results were more dramatic in the singly-crosslinked spaces.
"Potentially, what's happening is the single-crosslinked regions allow better nutrient transport and provide more space for cells to interact and, because it's less restrictive, there's space for new cells and matrix production," Alsberg said. "Cluster formation, in turn, may influence proliferation and differentiation. Differences in mechanical properties between regions likely also regulate the cell behaviors."
The researchers are continuing to use micropatterning to understand the influences of biomaterials on stem cell fate decisions. This approach may permit local control over cell behavior and, ultimately, allow the engineering of complex tissues comprised of multiple cell types using a single stem cell source.
INFORMATION:
The National Institutes of Health grants AR061265 and DE022376 funded the research.
Alsberg has received more than $3.6 million in grants this academic year to study ways to engineer or regenerate bone, cartilage and growth plate.
END
Like finally seeing all the gears of a watch and how they work together, researchers from UCLA and UC Berkeley have, for the first time ever, solved the puzzle of how the various components of an entire telomerase enzyme complex fit together and function in a three-dimensional structure.
The creation of the first complete visual map of the telomerase enzyme, which is known to play a significant role in aging and most cancers, represents a breakthrough that could open up a host of new approaches to fighting disease, the researchers said.
"Everyone in the field wants ...
COLUMBUS, Ohio – American adults who prepare their own meals and exercise on the same day are likely spending more time on one of those activities at the expense of the other, a new study suggests.
The research showed that a 10-minute increase in food preparation time was associated with a lower probability of exercising for 10 more minutes – for both men and women. The finding applied to single and married adults as well as parents and those who have no children.
Researchers analyzed nationally available data on more than 112,000 American adults who had reported their ...
Rochester, MN, April 12, 2013 – L-carnitine significantly improves cardiac health in patients after a heart attack, say a multicenter team of investigators in a study published today in Mayo Clinic Proceedings. Their findings, based on analysis of key controlled trials, associate L-carnitine with significant reduction in death from all causes and a highly significant reduction in ventricular arrhythmias and anginal attacks following a heart attack, compared with placebo or control.
Heart disease is the leading cause of death in the United States. Although many of the ...
LOS ANGELES – The company you keep in junior high school may have more influence on your smoking behavior than your high school friends, according to newly published research from the University of Southern California (USC).
The study, which appears in the April 12 issue of the Journal of Adolescent Health, identifies how friends' and parental influence on cigarette smoking changes from junior high to high school.
The research indicates that intervention targets to counteract friends' influence may have more of an effect in junior high than in high school, and that ...
According to the analysis, carbon dioxide removal could be used under certain requirements to alleviate the most costly components of mitigation, but it would not replace the bulk of actual emissions reductions.
"Carbon dioxide removal from the atmosphere allows to separate emissions control from the time and location of the actual emissions. This flexibility can be important for climate protection," says lead-author Elmar Kriegler. "You don't have to prevent emissions in every factory or truck, but could for instance plant grasses that suck CO2 out of the air to grow ...
Large helpers (nannies) in a cichlid fish allow the dominant male and female to reduce their personal contribution to their offspring and territory, according to new research published today in Functional Ecology.
By removing the large helper for 30 days – which corresponds to one breeding cycle in this species – a team from the University of Bristol and the University of Bern (Switzerland) studied the investment strategies of the dominant pair and the survival of their brood, while checking for immigration of new helpers.
Dr Rick Bruintjes, NERC Science & Business ...
Durham, NC —Evolution skeptics argue that some biological structures, like the brain or the eye, are simply too complex for natural selection to explain. Biologists have proposed various ways that so-called 'irreducibly complex' structures could emerge incrementally over time, bit by bit. But a new study proposes an alternative route.
Instead of starting from simpler precursors and becoming more intricate, say authors Dan McShea and Wim Hordijk, some structures could have evolved from complex beginnings that gradually grew simpler — an idea they dub "complexity by subtraction." ...
(Philadelphia, PA) – A major factor in the advance of heart disease is the death of heart tissue, a process that a team of scientists at Temple University School of Medicine's (TUSM) Center for Translational Medicine think could be prevented with new medicines. Now, the researchers are one step closer to achieving that goal, thanks to their discovery of a key molecule in an unexpected place in heart cells – mitochondria, tiny energy factories that house the controls capable of setting off cells' self-destruct sequence.
The study is the first to identify the molecule, ...
A new technique based on atomic force microscopy was developed at the Institute of Food Research to help 'read' information encoded in the gut lining.
The lining of our gut is an important barrier between the outside world and our bodies. Laid out, the gut lining would cover the area of a football pitch. It must let nutrients from our foods through, but prevent invasion by disease-causing bacteria, at the same time hosting the trillions of beneficial bacteria needed for proper digestion and immune function.
At the forefront of the defensive system is a layer of mucus ...
JACKSONVILLE, Fla. — Researchers at Mayo Clinic in Florida participated in a nationwide study that found minor differences between genes that contribute to late-onset Alzheimer's disease in African-Americans and in Caucasians.
The study, published April 10 in The Journal of the American Medical Association, was the first to look at the genetics of a large number of African-Americans diagnosed with this common form of Alzheimer's disease (1,968 patients) compared to 3,928 normal elderly African-American control participants.
The Alzheimer's Disease Genetics Consortium ...