(Press-News.org) Bioengineered rat kidneys developed by Massachusetts General Hospital (MGH) investigators successfully produced urine both in a laboratory apparatus and after being transplanted into living animals. In their report, receiving advance online publication in Nature Medicine, the research team describes building functional replacement kidneys on the structure of donor organs from which living cells had been stripped, an approach previously used to create bioartificial hearts, lungs and livers.
"What is unique about this approach is that the native organ's architecture is preserved, so that the resulting graft can be transplanted just like a donor kidney and connected to the recipient's vascular and urinary systems," says Harald Ott, MD, PhD, of the MGH Center for Regenerative Medicine, senior author of the Nature Medicine article. "If this technology can be scaled to human-sized grafts, patients suffering from renal failure who are currently waiting for donor kidneys or who are not transplant candidates could theoretically receive new organs derived from their own cells."
Around 18,000 kidney transplants are performed in the U.S. each year, but 100,000 Americans with end-stage kidney disease are still waiting for a donor organ. Even those fortunate enough to receive a transplant face a lifetime of immunosuppressive drugs, which pose many health risks and cannot totally eliminate the incidence of eventual organ rejection.
The approach used in this study to engineer donor organs, based on a technology that Ott discovered as a research fellow at the University of Minnesota, involves stripping the living cells from a donor organ with a detergent solution and then repopulating the collagen scaffold that remains with the appropriate cell type – in this instance human endothelial cells to replace the lining of the vascular system and kidney cells from newborn rats. The research team first decellularized rat kidneys to confirm that the organ's complex structures would be preserved. They also showed the technique worked on a larger scale by stripping cells from pig and human kidneys.
Making sure the appropriate cells were seeded into the correct portions of the collagen scaffold required delivering vascular cells through the renal artery and kidney cells through the ureter. Precisely adjusting the pressures of the solutions enabled the cells to be dispersed throughout the whole organs, which were then cultured in a bioreactor for up to 12 days. The researchers first tested the repopulated organs in a device that passed blood through its vascular system and drained off any urine, which revealed evidence of limited filtering of blood, molecular activity and urine production.
Bioengineered kidneys transplanted into living rats from which one kidney had been removed began producing urine as soon as the blood supply was restored, with no evidence of bleeding or clot formation. The overall function of the regenerated organs was significantly reduced compared with that of normal, healthy kidneys, something the researchers believe may be attributed to the immaturity of the neonatal cells used to repopulate the scaffolding.
"Further refinement of the cell types used for seeding and additional maturation in culture may allow us to achieve a more functional organ," says Ott. "Based on this inital proof of principle, we hope that bioengineered kidneys will someday be able to fully replace kidney function just as donor kidneys do. In an ideal world, such grafts could be produced 'on demand" from a patient's own cells, helping us overcome both the organ shortage and the need for chronic immunosuppression. We're now investigating methods of deriving the necessary cell types from patient-derived cells and refining the cell-seeding and organ culture methods to handle human-sized organs."
Ott's team focuses on the regeneration of hearts, lungs, kidneys and grafts made of composite tissues, while other teams – including one from the MGH Center for Engineering in Medicine – are using the decellularization technique to develop replacement livers. Lead author of the Nature Medicine paper is Jeremy Song, MGH Center for Regenerative Medicine; additional co-authors are Jacques Guyette, PhD, Sarah Gilpin, PhD, Gabriel Gonzalez, PhD, and Joseph Vacanti, MD, all of the MGH Center for Regenerative Medicine. The study was supported by National Institute of Health Director's New Innovator Award DP2 OD008749-01.
INFORMATION:
Massachusetts General Hospital (http://www.massgeneral.org), founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $775 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine. In July 2012, MGH moved into the number one spot on the 2012-13 U.S. News & World Report list of "America's Best Hospitals."
Mass. General team develops implantable, bioengineered rat kidney
Transplanted organ produces urine, but further refinement is needed
2013-04-15
ELSE PRESS RELEASES FROM THIS DATE:
New insight into accelerating summer ice melt on the Antarctic Peninsula
2013-04-15
A new 1000-year Antarctic Peninsula climate reconstruction shows that summer ice melting has intensified almost ten-fold, and mostly since the mid 20th Century. Summer ice melt affects the stability of Antarctic ice shelves and glaciers.
The research, published this week in the journal Nature Geoscience, adds new knowledge to the international effort that is required to understand the causes of environmental change in Antarctica and to make more accurate projections about the direct and indirect contribution of Antarctica's ice shelves and glaciers to global sea level ...
Nanosponges soak up toxins released by bacterial infections and venom
2013-04-15
Engineers at the University of California, San Diego have invented a "nanosponge" capable of safely removing a broad class of dangerous toxins from the bloodstream – including toxins produced by MRSA, E. coli, poisonous snakes and bees. These nanosponges, which thus far have been studied in mice, can neutralize "pore-forming toxins," which destroy cells by poking holes in their cell membranes. Unlike other anti-toxin platforms that need to be custom synthesized for individual toxin type, the nanosponges can absorb different pore-forming toxins regardless of their molecular ...
Cutting specific pollutants would slow sea level rise
2013-04-15
BOULDER – With coastal areas bracing for rising sea levels, new research indicates that cutting emissions of certain pollutants can greatly slow down sea level rise this century.
The research team found that reductions in four pollutants that cycle comparatively quickly through the atmosphere could temporarily forestall the rate of sea level rise by roughly 25 to 50 percent.
"To avoid potentially dangerous sea level rise, we could cut emissions of short-lived pollutants even if we cannot immediately cut carbon dioxide emissions," says Aixue Hu of the National Center ...
Mount Sinai study identifies new gene variations associated with heart rate
2013-04-15
(New York, NY – April 14, 2013) – Through a collaborative genome-wide study on individuals, researchers have discovered 14 new genetic variations that are associated with heart rate. Since heart rate is a marker of cardiovascular health, these findings could provide a better understanding of genetic regulation of heart beat and is a first step towards identifying targets for new drugs to treat cardiovascular disease.
The study, titled, "Identification of Heart Rate-Associated Loci and Their Effects on Cardiac Conduction and Rhythm Disorders," was published online this ...
Recent climate, glacier changes in Antarctica at the 'upper bound' of normal
2013-04-15
In the last few decades, glaciers at the edge of the icy continent of Antarctica have been thinning, and research has shown the rate of thinning has accelerated and contributed significantly to sea level rise.
New ice core research suggests that, while the changes are dramatic, they cannot be attributed with confidence to human-caused global warming, said Eric Steig, a University of Washington professor of Earth and space sciences.
Previous work by Steig has shown that rapid thinning of Antarctic glaciers was accompanied by rapid warming and changes in atmospheric ...
Bacterial security agents go rogue
2013-04-15
CRISPR, a system of genes that bacteria use to defend themselves against viruses, has been found to be involved in helping some bacteria evade the mammalian immune system.
The results are scheduled for publication Sunday, April 14 in Nature.
CRISPR is itself a sort of immune system for bacteria. Its function was discovered by dairy industry researchers seeking to prevent phages, the viruses that infect bacteria, from ruining the cultures used to make cheese and yogurt. Bacteria incorporate small bits of DNA from phages into their CRISPR region and use that information ...
Gene sequencing project finds new mutations to blame for a majority of brain tumor subtype
2013-04-15
The St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project has identified mutations responsible for more than half of a subtype of childhood brain tumor that takes a high toll on patients. Researchers also found evidence the tumors are susceptible to drugs already in development.
The study focused on a family of brain tumors known as low-grade gliomas (LGGs). These slow-growing cancers are found in about 700 children annually in the U.S., making them the most common childhood tumors of the brain and spinal cord. For patients whose ...
The tulip tree reveals mitochondrial genome of ancestral flowering plant
2013-04-15
The extraordinary level of conservation of the tulip tree (Liriodendron tulipifera) mitochondrial genome has redefined our interpretation of evolution of the angiosperms (flowering plants), finds research in biomed Central's open access journal BMC Biology. This beautiful 'molecular fossil' has a remarkably slow mutation rate meaning that its mitochondrial genome has remained largely unchanged since the dinosaurs were roaming the earth.
Evolutionary studies make used of mitochondrial (powerhouse) genomes to identify maternal lineages, for example the human mitochondrial ...
Ordinary skin cells morphed into functional brain cells
2013-04-15
Researchers at Case Western Reserve School of Medicine have discovered a technique that directly converts skin cells to the type of brain cells destroyed in patients with multiple sclerosis, cerebral palsy and other so-called myelin disorders.
This discovery appears today in the journal Nature Biotechnology.
This breakthrough now enables "on demand" production of myelinating cells, which provide a vital sheath of insulation that protects neurons and enables the delivery of brain impulses to the rest of the body. In patients with multiple sclerosis (MS), cerebral palsy ...
Better batteries from waste sulfur
2013-04-15
A new chemical process can transform waste sulfur into a lightweight plastic that may improve batteries for electric cars, reports a University of Arizona-led team. The new plastic has other potential uses, including optical uses.
The team has successfully used the new plastic to make lithium-sulfur batteries.
"We've developed a new, simple and useful chemical process to convert sulfur into a useful plastic," lead researcher Jeffrey Pyun said.
Next-generation lithium-sulfur, or Li-S, batteries will be better for electric and hybrid cars and for military uses because ...
LAST 30 PRESS RELEASES:
“Genetic time machine” reveals complex chimpanzee cultures
Earning money while making the power grid more stable – energy consumers have a key role in supporting grid flexibility
No ‘one size fits all’ treatment for Type 1 Diabetes, study finds
New insights into low-temperature densification of ceria-based barrier layers for solid oxide cells
AI Safety Institute launched as Korea’s AI Research Hub
Air pollution linked to longer duration of long-COVID symptoms
Soccer heading damages brain regions affected in CTE
Autism and neural dynamic range: insights into slower, more detailed processing
AI can predict study results better than human experts
Brain stimulation effectiveness tied to learning ability, not age
Making a difference: Efficient water harvesting from air possible
World’s most common heart valve disease linked to insulin resistance in large national study
Study unravels another piece of the puzzle in how cancer cells may be targeted by the immune system
Long-sought structure of powerful anticancer natural product solved by integrated approach
World’s oldest lizard wins fossil fight
Simple secret to living a longer life
Same plant, different tactic: Habitat determines response to climate
Drinking plenty of water may actually be good for you
Men at high risk of cardiovascular disease face brain health decline 10 years earlier than women
Irregular sleep-wake cycle linked to heightened risk of major cardiovascular events
Depression can cause period pain, new study suggests
Wistar Institute scientists identify important factor in neural development
New imaging platform developed by Rice researchers revolutionizes 3D visualization of cellular structures
To catch financial rats, a better mousetrap
Mapping the world's climate danger zones
Emory heart team implants new blood-pumping device for first time in U.S.
Congenital heart defects caused by problems with placenta
Schlechter named Cancer Moonshot Scholar
Two-way water transfers can ensure reliability, save money for urban and agricultural users during drought in Western U.S., new study shows
New issue of advances in dental research explores the role of women in dental, clinical, and translational research
[Press-News.org] Mass. General team develops implantable, bioengineered rat kidneyTransplanted organ produces urine, but further refinement is needed