There are a growing number of available methods that can be tried in the effort to reduce smoking, including medications, behavioral therapies, hypnosis, and even acupuncture. All attempt to alter brain function or behavior in some way.
A new study published in Biological Psychiatry now reports that a single 15-minute session of high frequency transcranial magnetic stimulation (TMS) over the prefrontal cortex temporarily reduced cue-induced smoking craving in nicotine-dependent individuals.
Nicotine activates the dopamine system and reward-related regions in the brain. Nicotine withdrawal naturally results in decreased activity of these regions, which has been closely associated with craving, relapse, and continued nicotine consumption.
One of the critical reward-related regions is the dorsolateral prefrontal cortex, which can be targeted using a brain stimulation technology called transcranial magnetic stimulation. Transcranial magnetic stimulation is a non-invasive procedure that uses magnetic fields to stimulate nerve cells. It does not require sedation or anesthesia and so patients remain awake, reclined in a chair, while treatment is administered through coils placed near the forehead.
Dr. Xingbao Li and colleagues at Medical University of South Carolina examined cravings triggered by smoking cues in 16 nicotine-dependent volunteers who received one session each of high frequency or sham repetitive transcranial magnetic stimulation applied over the dorsolateral prefrontal cortex. This design allowed the researchers to ferret out the effects of the real versus the sham stimulation, similar to how placebo pills are used in evaluating the effectiveness and safety of new medications.
They found that craving induced by smoking cues was reduced after participants received real stimulation. They also report that the reduction in cue-induced craving was positively correlated with level of nicotine dependence; in other words, the TMS-induced craving reductions were greater in those with higher levels of nicotine use.
Dr. John Krystal, Editor of Biological Psychiatry, commented, "One of the elegant aspects of this study is that it suggests that specific manipulations of particular brain circuits may help to protect smokers and possibly people with other addictions from relapsing."
"While this was only a temporary effect, it raises the possibility that repeated TMS sessions might ultimately be used to help smokers quit smoking. TMS as used in this study is safe and is already FDA approved for treating depression. This finding opens the way for further exploration of the use of brain stimulation techniques in smoking cessation treatment," said Li.
### The article is "Repetitive Transcranial Magnetic Stimulation of the Dorsolateral Prefrontal Cortex Reduces Nicotine Cue Craving" by Xingbao Li, Karen J. Hartwell, Max Owens, Todd LeMatty, Jeffrey J. Borckardt, Colleen A. Hanlon, Kathleen T. Brady, and Mark S. George (doi: 10.1016/j.biopsych.2013.01.003). The article appears in Biological Psychiatry, Volume 73, Issue 8 (April 15, 2013), published by Elsevier.
Notes for Editors Full text of the article is available to credentialed journalists upon request; contact Rhiannon Bugno at +1 214 648 0880 or Biol.Psych@utsouthwestern.edu. Journalists wishing to interview the authors may contact Xingbao Li at +843 876 5142 or lixi@musc.edu.
The authors' affiliations, and disclosures of financial and conflicts of interests are available in the article.
John H. Krystal, M.D., is Chairman of the Department of Psychiatry at the Yale University School of Medicine and a research psychiatrist at the VA Connecticut Healthcare System. His disclosures of financial and conflicts of interests are available here.
About Biological Psychiatry Biological Psychiatry is the official journal of the Society of Biological Psychiatry, whose purpose is to promote excellence in scientific research and education in fields that investigate the nature, causes, mechanisms and treatments of disorders of thought, emotion, or behavior. In accord with this mission, this peer-reviewed, rapid-publication, international journal publishes both basic and clinical contributions from all disciplines and research areas relevant to the pathophysiology and treatment of major psychiatric disorders.
The journal publishes novel results of original research which represent an important new lead or significant impact on the field, particularly those addressing genetic and environmental risk factors, neural circuitry and neurochemistry, and important new therapeutic approaches. Reviews and commentaries that focus on topics of current research and interest are also encouraged.
Biological Psychiatry is one of the most selective and highly cited journals in the field of psychiatric neuroscience. It is ranked 5th out of 129 Psychiatry titles and 16th out of 243 Neurosciences titles in the Journal Citations Reports® published by Thomson Reuters. The 2011 Impact Factor score for Biological Psychiatry is 8.283.
ABOUT ELSEVIER
Elsevier is a world-leading publisher of scientific, technical and medical information products and services. The company works in partnership with the global science and health communities to publish more than 2,000 journals, including The Lancet and Cell, and close
to 20,000 book titles, including major reference works from Mosby and Saunders. Elsevier's online solutions include SciVerse ScienceDirect, SciVerse Scopus, Reaxys, MD Consult and Nursing Consult, which enhance the productivity of
science and health professionals, and the SciVal suite and MEDai's Pinpoint Review, which help research and health care institutions deliver better outcomes more cost-effectively.
A global business headquartered in Amsterdam, Elsevier employs 7,000 people worldwide. The company is part of Reed Elsevier Group PLC, a world-leading publisher and information provider, which is jointly owned by Reed Elsevier PLC and Reed Elsevier NV. The ticker symbols are REN (Euronext Amsterdam), REL (London Stock Exchange), RUK and ENL (New York Stock Exchange).