(Press-News.org) Stem cells and tissue-specific cells can be grown in abundance from mature mammalian cells simply by blocking a certain membrane protein, according to scientists at the University of Pittsburgh School of Medicine and the National Institutes of Health (NIH). Their experiments, reported today in Scientific Reports, also show that the process doesn't require other kinds of cells or agents to artificially support cell growth and doesn't activate cancer genes.
Scientists hope that lab-grown stem cells and induced pluripotent stem (iPS) cells, which have the ability to produce specialized cells such as neurons and cardiac cells, could one day be used to treat diseases and repair damaged tissues, said co-author Jeffrey S. Isenberg, M.D., associate professor, Division of Pulmonary, Allergy and Critical Care Medicine, Pitt School of Medicine.
"Even though stem cells are able to self-renew, they are quite challenging to grow in the lab," he said. "Often you have to use feeder cells or introduce viral vectors to artificially create the conditions needed for these cells to survive and thrive."
In 2008, prior to joining Pitt, Dr. Isenberg was working in the National Cancer Institute (NCI) lab of senior author David D. Roberts, Ph.D., using agents that block a membrane protein called CD47 to explore their effects on blood vessels. He noticed that when cells from the lining of the lungs, called endothelium, had been treated with a CD47 blocker, they stayed healthy and maintained their growth and function for months.
Dr. Roberts' NIH team continued to experiment with CD47 blockade, focusing on defining the underlying molecular mechanisms that control cell growth.
They found that endothelial cells obtained from mice lacking CD47 multiplied readily and thrived in a culture dish, unlike those from control mice. Lead author Sukhbir Kaur, Ph.D., discovered that this resulted from increased expression of four genes that are regarded to be essential for formation of iPS cells. When placed into a defined growth medium, cells lacking CD47 spontaneously formed clusters characteristic of iPS cells. By then introducing various growth factors into the culture medium, these cells could be directed to become cells of other tissue types. Despite their vigorous growth, they didn't form tumors when injected into mice, a major disadvantage when using existing iPS cells.
"Stem cells prepared by this new procedure should be much safer to use in patients," Dr. Roberts noted. "Also, the technique opens up opportunities to treat various illnesses by injecting a drug that stimulates patients to make more of their own stem cells."
According to Dr. Isenberg, "These experiments indicate that we can take a primary human or other mammalian cell, even a mature adult cell, and by targeting CD47 turn on its pluripotent capability. We can get brain cells, liver cells, muscle cells and more. In the short term, they could be a boon for a variety of research questions in the lab."
In the future, blocking CD47 might make it possible to generate large numbers of healthy cells for therapies, such as alternatives to conventional bone marrow transplantation and complex tissue and organ bioengineering, he added.
"These exciting findings provide a rationale for using CD47 blocking therapies to increase stem cell uptake and survival in transplanted organs, matrix grafts, or other applications," said Mark Gladwin, M.D., professor and chief, Division of Pulmonary, Allergy and Critical Care Medicine, Pitt School of Medicine. "This continues a strong and productive collaboration between investigators at the NCI and the University of Pittsburgh's Vascular Medicine Institute."
###
Co-authors of the paper include David R. Soto-Pantoja, Ph.D., Michael L. Pendrak, Ph.D., Alina Nicolae, M.D., Ph.D., Zuqin Nie, Ph.D., and David Levens, M.D., Ph.D., of the National Cancer Institute (NCI); Erica V. Stein, B.S., M.Ed., of NCI and George Washington University; Chengyu Liu, Ph.D., of the National Heart, Lung and Blood Institute; Abdel G. Elkahloun, Ph.D., of the National Human Genome Research Institute (NHGRI); and Satya P. Singh, Ph.D., of the National Institute of Allergy and Infectious Diseases.
The project was funded by the NIH, NCI and NHGRI intramural programs and grants HL108954-01, HL103455-01, 11BGIA7210001; the Institute for Transfusion Medicine, the Western Pennsylvania Hemophilia Center, and Pitt's Vascular Medicine Institute.
About the University of Pittsburgh School of Medicine
As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1998. In rankings recently released by the National Science Foundation, Pitt ranked fifth among all American universities in total federal science and engineering research and development support.
Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see http://www.medschool.pitt.edu.
Recipe for large numbers of stem cells requires only one ingredient, says NIH/Pitt team
2013-04-17
ELSE PRESS RELEASES FROM THIS DATE:
University of Southern California scientists reveal natural process that blocks viruses
2013-04-17
The human body has the ability to ward off viruses by activating a naturally occurring protein at the cellular level, setting off a chain reaction that disrupts the levels of cholesterol required in cell membranes to enable viruses to enter cells. The findings, discovered by researchers in molecular microbiology and immunology at the Keck School of Medicine of USC, hold promise for the development of therapies to fight a variety of viral infections.
"Previous studies have shown that our bodies are already equipped to block viruses such as Ebola, influenza, West Nile, ...
CU-Boulder study looks at microbial differences between parents, kids and dogs
2013-04-17
As much as dog owners love their children, they tend to share more of themselves, at least in terms of bacteria, with their canine cohorts rather than their kids.
That is just one finding of a new study led by the University of Colorado Boulder that looked at the types and transfer modes of microbes from the guts, tongues, foreheads and palms (or paws) of members of 60 American families, including canines. Identifying how such bacterial communities can be affected by environmental exposure may help scientists better understand how they can be manipulated to prevent or ...
Virus-like particles provide vital clues about brain tumors
2013-04-17
"Current wisdom says that cells are closed entities that communicate through the secretion of soluble signalling molecules. Recent findings indicate that cells can exchange more complex information – whole packages of genetic material and signalling proteins. This is an entirely new conception of how cells communicate", says Dr Mattias Belting, Professor of Oncology at Lund University and senior consultant in oncology at Skåne University Hospital, Lund, Sweden.
Exosomes are small vesicles of only 30 nm. They are produced inside cells and act as "transport vehicles" of ...
New keyboard for touchscreens
2013-04-17
Typing on today's mobile phones and tablets is needlessly slow. One limitation is that the QWERTY layout is ill-suited for tablets and other touch-screen devices when typing with the thumbs. Two-thumb typing is ergonomically very different from typing on a physical keyboard. It has been established that normal users using a QWERTY on a touch-screen device are limited to typing at a rate of around 20 words per minute, which is slow compared to the rates achieved on physical keyboards. The researchers set out to create an alternative to QWERTY that offers substantial performance ...
Half of Tamiflu prescriptions went unused during 2009 H1N1 swine flu pandemic, UK sewage study
2013-04-17
A new study concludes that approximately half of the prescriptions of Tamiflu during the 2009-10 influenza pandemic went unused in England. The unused medication represents approximately 600,000 courses of Tamiflu at a cost of around £7.8 million to the UK taxpayer. The novel scientific method used in the study could help measure and improve the effectiveness of future pandemic flu strategies.
The finding, published online this week in the open access scientific journal PLOS ONE, comes from the first study of its kind to use sewage water to estimate drug compliance rates, ...
Molecule treats leukemia by preventing cancer cell repair, Jackson Laboratory scientists report
2013-04-17
Researchers at The Jackson Laboratory have identified a molecule that prevents repair of some cancer cells, providing a potential new "genetic chemotherapy" approach to cancer treatment that could significantly reduce side effects and the development of treatment resistance compared with traditional chemotherapy.
In healthy people, white blood cells called B cells (or B lymphocytes) are a kind of sophisticated tool kit, making antibodies against pathogens or other invaders. In the process of antibody production, B cells turn on the gene known as activation-induced cytidine ...
Navy develops high impact, high integrity polymer for air, sea, and domestic applications
2013-04-17
WASHINGTON--U.S. Naval Research Laboratory Chemistry Division scientists have developed a second generation, cost-effective polyetheretherketone (PEEK)-like phthalonitrile-resin demonstrating superior high temperature and flammability properties for use in numerous marine, aerospace and domestic applications.
The resin can be used to make composite components by established industrial methods such as resin transfer molding (RTM), resin infusion molding (RIM), filament winding, prepreg consolidation, and potentially by automated composite manufacturing techniques such ...
People present themselves in ways that counteract prejudices toward their group
2013-04-17
Individuals from stigmatized groups choose to present themselves in ways that counteract the specific stereotypes and prejudices associated with their group, according to a new study published in Psychological Science, a journal of the Association for Psychological Science.
"People often think of prejudice as a simple, single phenomenon — general dislike for members of other groups — but recent research suggests that there are actually multiple, distinct types of prejudice," says graduate student Rebecca Neel, who conducted the research with her advisor Steven Neuberg ...
Few breast cancer survivors maintain adequate physical activity despite benefits
2013-04-17
SEATTLE – Breast cancer survivors are among the women who could most benefit from regular physical activity, yet few meet national exercise recommendations during the 10 years after being diagnosed, according to a study by researchers at Fred Hutchinson Cancer Research Center. Prior studies and available evidence show a strong association between physical activity and reduced mortality, extended survival and higher quality of life among breast cancer survivors. With 2.9 million breast cancer survivors living in the U.S. and another 80,000 added annually, there is considerable ...
Reproductive tract secretions elicit ovulation
2013-04-17
Baltimore, MD— Eggs take a long time to produce in the ovary, and thus are one of a body's precious resources. It has been theorized that the body has mechanisms to help the ovary ensure that ovulated eggs enter the reproductive tract at the right time in order to maximize the chance of successful fertilization.
New research from Carnegie's Allan Spradling and Jianjun Sun has shed light on how successful ovulation and fertilization are brought about by studying these processes in fruit flies. They found that secretions from special glands within the fruit fly's reproductive ...