(Press-News.org) Researchers from the RIKEN Center for Integrative Medical Sciences in Japan report today that they have identified a compound that could be used as a new treatment to prevent relapse in acute myeloid leukemia patients.
In a study published in Science Translational Medicine, they show that this compound reduces the risk of relapse in a mouse model of the human disease. They report that this compound could be most active in patients that carry a mutation lowering their chances of recovery.
Acute myeloid leukemia (AML) is an acute type of blood cancer that starts in the blood-forming cells in the bone marrow. AML is the most common type of acute leukemia in adults.
While many patients are able to fight off the disease at first with conventional chemotherapy, long-term outcomes in the majority of patients are poor due to disease relapse.
"To improve patient outcomes, it is crucial to understand the mechanisms of AML relapse and to develop effective treatment strategies to reduce AML relapse," explains Dr. Ishikawa who led the study.
Over the last decade, bone marrow cells called leukemia stem cells (LSC) have been recognized as key players in human AML pathogenesis as well as chemotherapy resistance and relapse. Previous studies have suggested that LSCs might cause relapse if they are not properly eliminated by conventional chemotherapy.
By transplanting LSCs obtained from AML patient samples into immune-deficient newborn mice, Ishikawa and his team developed a mouse model for AML, which they used to study AML and LSCs.
Using this model, they were able to identify a protein (HCK) present in higher quantities in human AML LSCs than in normal blood-forming stem cells, and that could be used as a target for therapeutic agents against human AML LSCs.
In the present study, the researchers screened a library of tens of thousands of small molecules that could act as therapeutic agents by specifically inhibiting HCK. They isolated one small molecule that was highly active against patient-derived AML LSCs grown in culture. To assess the potential of this molecule for therapeutic development, they administered it to their mouse model of AML. They find that administration of this molecule results in a significant reduction of human AML cells in the blood of the mice, as well as a reduction of human AML LSCs in the bone marrow of the mice.
In particular, in mice engrafted with human AML derived from patients with the FLT3-ITD mutation, one of the mutations associated with worse clinical outcomes, the administration of the small molecule led to nearly complete elimination of both AML LSCs and non-stem AML cells in the bone marrow of multiple bones (femur, tibia, sternum and spine) as well as the spleen and peripheral blood.
"These findings suggest that treatment with this small molecule may help reduce relapse in AML patients," conclude the authors.
"However, more work is needed before this small molecule can be delivered to patients as a therapeutic agent. We now plan to proceed with a more in-depth biochemical and pharmacologic characterization of this compound in the lab, to find out whether it is safe and to determine which subset of AML patients could benefit from it. Ultimately, we hope to develop a drug that can be used in the clinic," adds Dr. Ishikawa.
###
Reference: Yoriko Saito, et al. "A Pyrrolo-Pyrimidine Derivative Targets Human Primary AML Stem Cells in Vivo." Science Translational Medicine, 2013
A key building block in the Schmallenberg virus could be targeted by anti-viral drugs, according to a new study led from the University of Leeds.
The disease, which causes birth defects and stillbirths in sheep, goats and cattle, was first discovered in Germany in late 2011 and has already spread to more than 5,000 farms across Europe, and 1,500 farms in the UK alone.
There is currently no way of treating infected animals, but a study published in Nucleic Acids Research reports that the Schmallenberg virus nucleocapsid protein, which protects its genetic material, could ...
DURHAM, N.C. -- Close family members of people with Alzheimer's disease are more than twice as likely as those without a family history to develop silent buildup of brain plaques associated with Alzheimer's disease, according to researchers at Duke Medicine.
The study, published online in the journal PLOS ONE on April 17, 2013, confirms earlier findings on a known genetic variation that increases one's risk for Alzheimer's, and raises new questions about other genetic factors involved in the disease that have yet to be identified.
An estimated 25 million people worldwide ...
An international team of researchers has decoded the genome of a creature whose evolutionary history is both enigmatic and illuminating: the African coelacanth. A sea-cave dwelling, five-foot long fish with limb-like fins, the coelacanth was once thought to be extinct. A living coelacanth was discovered off the African coast in 1938, and since then, questions about these ancient-looking fish – popularly known as "living fossils" – have loomed large. Coelacanths today closely resemble the fossilized skeletons of their more than 300-million-year-old ancestors. Its genome ...
The European Commission needs to make some key innovations in its science funding programme if Europe is to enjoy the full benefits of the €70 billion to be spent on science research as part of the Horizon 2020 programme kicking off in 2014, according to an academic paper published by SAGE in the Journal of Health Services Research & Policy today.
The Commission has already taken important steps to reduce administration costs and stimulate the participation of small business in research, but there are still significant gaps, say the authors of Europe's 'Horizon 2020' ...
While studying rats' ability to navigate familiar territory, Johns Hopkins scientists found that one particular brain structure uses remembered spatial information to imagine routes the rats then follow. Their discovery has implications for understanding why damage to that structure, called the hippocampus, disrupts specific types of memory and learning in people with Alzheimer's disease and age-related cognitive decline. And because these mental trajectories guide the rats' behavior, the research model the scientists developed may be useful in future studies on higher-level ...
Chevy Chase, MD—Reminding primary care doctors to test at-risk patients for osteoporosis can prevent fractures and reduce health care costs, according to a recent study accepted for publication in The Endocrine Society's Journal of Clinical Endocrinology & Metabolism (JCEM).
Osteoporosis is a condition that is common, costly and undertreated. Low trauma fractures in older individuals are a "red flag" for osteoporosis, but those at risk often are not treated for the condition. Rates of osteoporosis testing and treatment are typically less than 20 percent in the first ...
Chevy Chase, MD––Although the drug zoledronic acid slows bone loss in osteoporosis patients, it also boosts levels of a biomarker that stops bone formation, according to a recent study accepted for publication in The Endocrine Society's Journal of Clinical Endocrinology & Metabolism (JCEM).
Osteoporosis weakens bones and increases the risk patients will suffer fractures. The findings suggest combination therapy may be a more effective approach to battling this common condition.
"The key to effectively treating osteoporosis lies in increasing bone mass," said the study's ...
Chevy Chase, MD––Hair strands contain valuable information about senior citizens' stress levels that can be used to determine an individual's cardiovascular disease risk, according to a recent study accepted for publication in The Endocrine Society's Journal of Clinical Endocrinology & Metabolism (JCEM).
Unlike a blood test that captures a snapshot of stress hormone levels at a single point in time, a scalp hair analysis can be used to view trends in levels of the stress hormone cortisol over the course of several months. This approach allows researchers to have a better ...
Astronomers using a world-wide collection of telescopes have discovered the most prolific star factory in the Universe, surprisingly in a galaxy so distant that they see as it was when the Universe was only six percent of its current age.
The galaxy, dubbed HFLS3, 12.8 billion light-years from Earth, is producing the equivalent of nearly 3,000 Suns per year, a rate more than 2,000 times that of our own Milky Way. The galaxy is massive, with a huge reservoir of gas from which to form new stars.
"This is the most detailed look into the physical properties of such a distant ...
DALLAS – April 17, 2013 – Researchers at UT Southwestern Medical Center have identified a specific gene that regulates the heart's ability to regenerate after injuries.
The function of the gene, called Meis1, in the heart was not known previously. The findings of the UTSW investigation are available online in Nature.
"We found that the activity of the Meis1 gene increases significantly in heart cells soon after birth, right around the time heart muscle cells stop dividing. Based on this observation we asked a simple question: If the Meis1 gene is deleted from the heart, ...