PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Turning old hearts

Harvard Stem Cell Institute researchers identify protein that reverses some effects of aging in mouse hearts

2013-05-09
(Press-News.org) Cambridge, MA, May 9, 2013 - Two Harvard Stem Cell Institute researchers – one a stem cell biologist and one a practicing cardiologist at Brigham and Women's Hospital – have identified a protein in the blood of mice and humans that may prove to be the first effective treatment for the form of age-related heart failure that affects millions of Americans.

When the protein, called GDF-11, was injected into old mice, which develop thickened heart walls in a manner similar to aging humans, the hearts were reduced in size and thickness, resembling the healthy hearts of younger mice.

Even more important than the implications for the treatment of diastolic heart failure, the finding by Richard T. Lee, a Harvard Medical School professor at BWH, and Amy Wagers, a professor in Harvard's Department of Stem Cell and Regenerative Biology ultimately may rewrite our understanding of aging.

A report on Lee and Wagers's findings was published today by the journal Cell.

"The most common form of heart failure (in the elderly) is actually a form that's not caused by heart attacks but is very much related to the heart aging," said Lee, who, like Wagers, is an HSCI Principal Faculty member. "In this study we were able to show that a protein that circulates in the blood is related to this aging process, and if we gave older mice this protein, we could reverse the heart aging in a very short period of time," Lee said. "We are very excited about it because it opens a new window on the most common form of heart failure," says Lee, adding, "this is the coolest thing I've ever been a part of."

Doug Melton, HSCI co-director and Harvard's Xander University Professor, calls the discovery "huge. It's going to change the way we think about aging," he says.

I have 300 patients right now and I think I have about 20 who are suffering from this type of heart failure, which we sometimes call diastolic heart failure," says Lee. "They come into the hospital, have a lot of fluid taken off, then they'll go home; then they come back again. It's really frustrating because we don't have any drugs to treat this. We need to work as hard as we can, to figure out if this discovery can be turned into a treatment for heart failure in our aging patients."

The Lee and Wagers labs now are focused on moving GDF-11 toward clinical trials – which Lee predicts could begin in four to five years – and learning what other tissue types the protein might affect.

Wagers, who has been working with what is called the parabiotic mouse system – in which mice share a circulatory system – since her postdoctoral days at Stanford, has previously shown that factors in the blood of young animals, which until now were unidentified, have a rejuvenating effect upon various tissues in older animals, particularly in the spinal cored and musculature.

"As we age there are many changes that occur in different parts of the body," Wagers notes, "and those changes are often associated with a decline in the function of our bodies. One of the interests of my laboratory is in understanding why this happens and whether it is an inevitable consequence of aging, or if it might be reversible. In this study we compared young and old animals and identified a substance in the blood that is present at high levels when you're young, and lower levels when you're old. We further found that when we supplemented the low levels of this substance that were present in old animals to the levels normally seen in youth, this could have a dramatic effect on the heart.

"It's been observed for many, many years that when aging occurs it effects multiple body systems sort of in a semi-synchronous way," Wagers says, "and this suggests that there may be some common signal that drives the body's response to getting older. We hypothesized that this common signal might be a substance that was traveling in the blood stream, because the blood stream accesses organs throughout the body."

"I think Amy and I started thinking about something like this almost five years ago," says Lee, who says that he and Wagers were brought together by HSCI. "Without the Harvard Stem Cell Institute, this never would have happened," he says.

The researchers conducted their first experiment about four years ago, and the results were startling, Lee says. "A Fellow named Francesco Loffredo was examining the hearts of the aging mice. He came to me and said 'you don't have to analyze it; you can see it with the naked eye.' I couldn't believe that, and I said 'go back, analyze it, and do it blinded.' Then I looked at the hearts and I could see he was correct," Lee recounts.

When we started these experiments, I actually was thinking that there would not be a response," Wagers says. "We had been using similar kinds of approaches in other tissues, regenerative tissues, tissues that we know have the capacity to heal themselves after they've been injured. But the heart is not well known for doing that, and so I was quite convinced that there would be no response. When I saw the dramatic difference in heart size that was very apparent after this exposure of an old animal to young blood, it was very clear that we had to figure out what was going on," she says.

"The blood is full of all kinds of things," the biologist continues, "and trying to narrow down what might be the responsible factor was going to be a big challenge. I think that's where the collaboration was so wonderful in that we could take advantage of the expertise in both of our laboratories to really home in on what might be the responsible substance.

As Lee explains, "we thought it was interesting right away, and we repeated it right away. But we had to show that this was not a blood pressure effect, that the young mice didn't just cause the old mice to have lower blood pressure. We had to build a custom device to measure blood pressures off their tails. It took a year to do the analysis to show that it was not a blood pressure effect."

He continues: "After about two and a half years we were convinced, and said, 'we really have to identify this factor. It took about six months to find something and another year to be convinced that it was real. We looked at lipids; we looked at metabolites. Then we sent up a collaboration with a startup company in Colorado, called Somalogic, that had an interesting technology for analyzing factors in blood, and by working closely with Somalogic, we found the likely factor."

What the researchers found was that at least one of the factors causing the rejuvenation of the hearts was GDF-11, "a member of a very important family of proteins called TGF-beta proteins, for Transforming Growth Factor. There are around 35 members of the family," Lee says, "some have been very well studied, and this is one that is relatively obscure."

Over the course of her still early career, Wagers has celebrated the publication of important papers by going skydiving. This coming weekend, she plans to once again take the plunge, this time accompanied by Lee postdoc Francesco Loffredo.



INFORMATION:

Dial-in embargoed press conference scheduled for TUESDAY, MAY 7, @ 11 Eastern time. Contact bd_colen@harvard.edu for dial-in information



ELSE PRESS RELEASES FROM THIS DATE:

Advance in tuberous sclerosis brain science

2013-05-09
PROVIDENCE, R.I. [Brown University] — Doctors often diagnose tuberous sclerosis complex (TSC) based on the abnormal growths the genetic disease causes in organs around the body. Those overt anatomical structures, however, belie the microscopic and mysterious neurological differences behind the disease's troublesome behavioral symptoms: autism, intellectual disabilities, and seizures. In a new study in mice, Brown University researchers highlight a role for a brain region called the thalamus and show that the timing of gene mutation during thalamus development makes a huge ...

Dad's genome more ready at fertilization than mom's is -- but hers catches up

2013-05-09
SALT LAKE CITY—Researchers from Huntsman Cancer Institute (HCI) at the University of Utah have discovered that while the genes provided by the father arrive at fertilization pre-programmed to the state needed by the embryo, the genes provided by the mother are in a different state and must be reprogrammed to match. The findings have important implications for both developmental biology and cancer biology. In the earliest stages, embryo cells have the potential to develop into any type of cell, a state called totipotency. Later, this potency becomes restricted through ...

Gene identified, responsible for a spectrum of disorders affecting the bones and connective tissue

2013-05-09
Researchers from the RIKEN Center for Integrative Medical Sciences have identified a gene that when mutated is responsible for a spectrum of disorders affecting the bones and connective tissue. This finding opens new avenues for research into a diagnosis and treatment for these until now incurable diseases. The study is published today in the American Journal of Human Genetics. Spondyloepimetaphyseal dysplasia with joint laxity, type I or SEMD-JL1 is a disorder of the skeleton resulting in short stature and spinal problems starting from birth, and worsening with age. ...

Exit discovered in cellular garbage truck

2013-05-09
At the University of Geneva (UNIGE), the team led by Professor Jean Gruenberg has long been interested in the movement of lysosomes, the sub-compartments of cells to where endocytic vesicles deliver their waste content and the molecules destined to be destroyed. Within this context, researcher Christin Bissig, along with her international colleagues, carried out a detailed study of the route taken by Alix which is lodged inside the endosomal membrane. This tailing has highlighted how protein contributes to avoiding cellular digestion, like a door opening into the endosomal ...

Operating without interrupting warfarin reduces risk of bleeding after cardiac device surgery

2013-05-09
DENVER, May 9, 2013 – A new Canadian study shows that operating without interrupting warfarin treatment at the time of cardiac device surgery is safe and markedly reduces the incidence of clinically significant hematomas compared to the current standard of care. The new findings were released today at Heart Rhythm 2013, the Heart Rhythm Society's 34th Annual Scientific Sessions, and will be published online today in The New England Journal of Medicine (NEJM). At least a quarter of patients that require pacemaker or implantable defibrillator surgery are taking warfarin ...

Scripps Research Institute scientists find key to gene-silencing activity

2013-05-09
LA JOLLA, CA – May 9, 2013 – A team led by scientists at The Scripps Research Institute (TSRI) has found how to boost or inhibit a gene-silencing mechanism that normally serves as a major controller of cells' activities. The discovery could lead to a powerful new class of drugs against viral infections, cancers and other diseases. "Learning to control natural gene silencing processes will allow an entirely new approach to treating human disease," said Ian J. MacRae, assistant professor in TSRI's Department of Integrative Structural and Computational Biology and principal ...

Studies generate comprehensive list of genes required by innate system to defend sex cells

2013-05-09
Cold Spring Harbor, NY – Two teams of investigators led by Professor Gregory Hannon of Cold Spring Harbor Laboratory (CSHL) today publish studies revealing many previously unknown components of an innate system that defends sex cells – the carriers of inheritance across generations – from the ravages of transposable genetic elements. When activated, these troublesome segments of DNA, also called jumping genes or transposons, can copy and insert themselves at random spots across the chromosomes. In sperm and egg cells the proliferation of transposons can be particularly ...

Scientists show how nerve wiring self-destructs

2013-05-09
Many medical issues affect nerves, from injuries in car accidents and side effects of chemotherapy to glaucoma and multiple sclerosis. The common theme in these scenarios is destruction of nerve axons, the long wires that transmit signals to other parts of the body, allowing movement, sight and sense of touch, among other vital functions. Now, researchers at Washington University School of Medicine in St. Louis have found a way the body can remove injured axons, identifying a potential target for new drugs that could prevent the inappropriate loss of axons and maintain ...

No holes in Swiss online networking theory

2013-05-09
Often, it's not what you know, but who you know when it comes to business and research success and that still applies even in the age of online social networking, according to results to be published in the International Journal of Organisational Design and Engineering. Peter Gloor, Pierre Dorsaz, Hauke Fuehres and Manfred Vogel of the MIT Center for Collective Intelligence, in Cambridge, Massachusetts have compared the success of startup entrepreneurs and innovators with their activity on the social networking sites LinkedIn and Facebook as well as email networks including ...

Toddlers from socially-deprived homes most at risk of scalds, study finds

2013-05-09
Toddlers living in socially-deprived areas are at the greatest risk of suffering a scald in the home, researchers at The University of Nottingham have found. The study, published in the journal Burns, showed that boys aged between one and two years old and those with multiple siblings were statistically more likely to suffer a hot water-related injury, while children born to mothers aged 40 years and over were at less risk than those with teenage mums. The results could help GPs and Health Visitors identify those children most at risk of a scald and prevent injuries ...

LAST 30 PRESS RELEASES:

Animated movie characters with strabismus are more likely to be villains, study finds

How retailers change ordering strategy when a supplier starts its own direct channel

Young coral use metabolic tricks to resist bleaching

Protecting tax whistleblowers pays off

Bioluminescent proteins made from scratch enable non-invasive, multi-functional biological imaging

New study links air pollution with higher rates of head and neck cancer

LSU researchers excavate earliest ancient Maya salt works

Building a diverse wildland fire workforce to meet future challenges

MBARI researchers discover remarkable new swimming sea slug in the deep sea

Decentralized social media ‘increases citizen empowerment’, says Oxford study

Validating an electronic frailty index in a national health system

Combination approach shows promise for treating rare, aggressive cancers

Raise the roof: How to reduce badminton birdie drift

Ouch! Commonalties found in pain vocalizations and interjections across cultures

Income-related disparities in mortality among young adults with type 2 diabetes

Medical board discipline of physicians for spreading medical misinformation

First-ever randomized clinical trial uses telehealth for suicide prevention

DNA packaging directly affects how fast DNA is copied in cells

Scientists develop advanced catalyst for self-driven seawater splitting with enhanced chloride resistance

City of Hope researchers discover why taking a mushroom supplement slows or prevents prostate cancer from getting worse

Montefiore Einstein’s Marina Konopleva joins Break Through Cancer TeamLab in fight against acute myelogenous leukemia

Early treatment for nerve tumors prevents serious problems, study finds

Study: Student absenteeism crisis may be hurting teacher job satisfaction

Medicaid enrollment continuity tied to lymphoma stage at diagnosis

INSEAD launches free Negotiation Course for the World

Wyss Institute’s iNodes team receives ARPA-H Sprint for Women’s Health award to advance the first implantable immune organs to treat ovarian cancer

Goblet cells could be the guardians of the gut

Romania’s science journalists join forces on new reporting handbook 

SwRI-led team proposes new solar composition ratios that could reconcile longstanding questions

Sodium butyrate inhibits necroptosis by regulating MLKL via E2F1 in intestinal epithelial cells of liver cirrhosis

[Press-News.org] Turning old hearts
Harvard Stem Cell Institute researchers identify protein that reverses some effects of aging in mouse hearts