(Press-News.org) ORLANDO, Fla., May 16, 2013 — The hardening of arteries is a hallmark of atherosclerosis, an often deadly disease in which plaques, excessive connective tissue, and other changes build up inside vessel walls and squeeze off the flow of oxygen-rich blood throughout the body. Now, researchers at Sanford-Burnham Medical Research Institute have described the molecular and cellular pathway that leads to this hardening of the arteries—and zeroed in on a particularly destructive protein called Dkk1.
Their study was published online today by Arteriosclerosis, Thrombosis, and Vascular Biology. The findings suggest that the development of drug therapies to selectively inhibit endothelial Dkk1 signaling may help limit arteriosclerotic disease.
"I think the strategy going forward is to find ways to modulate or inhibit Dkk1 function, but we're going to have to do it in a time-sensitive and cell type- specific fashion," said Dwight A. Towler, M.D., Ph.D., director of Sanford-Burnham's Cardiovascular Pathobiology Program and senior author of the study. "In diseases such as chronic renal deficiency or diabetes, where unregulated Dkk1 signaling can be destructive, it may be appropriate to restrain the action of Dkk1 for a prolonged period of time," Towler added.
When the inflammatory response goes awry
The Dkk1 protein, when functioning normally, is important for aiding in wound repair. But inflammatory responses triggered inside artery walls after the onset of hyperglycemia, and other metabolic injuries associated with diseases like diabetes, can trigger prolonged and destructive Dkk1 signaling.
Dkk1 triggers the conversion of cells that line the interior surface of artery walls, called endothelial cells, into mesenchymal cells, which can direct connective tissue formation. This process is known as the endothelial-mesenchymal transition. The resulting fibrosis inside arterial walls leads to a dangerous stiffening of vessels that increases systolic blood pressure and ultimately impairs distal blood flow.
Drug therapy strategies to target Dkk1
Drug therapies should focus on the places where Dkk1 inhibition is called for—the arteries, in the case of atherosclerosis—because healthy Dkk1 signaling regulates normal processes such as cartilage and joint remodeling. To enable this targeted approach, Towler said he hopes to develop a therapeutic drug that would include a Dkk1 inhibitor and a peptide—a short chain of amino acids—engineered to target specific vascular tissues.
Longtime Sanford-Burnham researcher and past president Erkki Ruoslahti, M.D., Ph.D., developed these homing peptides, which have been used to deliver cancer drugs to where they're most needed. "If we can target a Dkk1 antagonist to endothelial cells using the Ruoslahti peptides—or a similar strategy—that would be very, very powerful," Towler said.
Dkk1 is from a family of molecules that arose during the development of vertebrates and is involved in heart formation in embryos. Researchers initially thought the protein's only role was to inhibit a molecular pathway known as canonical Wnt signaling, which controls cell differentiation. However, these new data identify surprising "cross-talk" between Dkk1 and a bone-inducing pathway previously shown to promote the endothelial-mesenchymal transition.
Towler and his team will continue to study Dkk1 and Wnt signaling to identify potential drug targets to prevent the hardening of arteries in patients with atherosclerosis.
INFORMATION:
This research was funded by the U.S. National Institutes of Health (grants HL81138, HL69229, and HL88651) and the Barnes-Jewish Hospital Foundation.
The study was co-authored by Su-Li Cheng, Sanford-Burnham; Jian-Su Shao, Washington University; Abraham Behrmann, Sanford-Burnham; Karen Krchma, Sanford-Burnham; and Dwight A. Towler, Sanford-Burnham.
About Sanford-Burnham Medical Research Institute
Sanford-Burnham Medical Research Institute is dedicated to discovering the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Sanford-Burnham takes a collaborative approach to medical research with major programs in cancer, neurodegeneration, diabetes, and infectious, inflammatory, and childhood diseases. The Institute is recognized for its National Cancer Institute-designated Cancer Center and expertise in drug discovery technologies. Sanford-Burnham is a nonprofit, independent institute that employs 1,200 scientists and staff in San Diego (La Jolla), California, and Orlando (Lake Nona), Florida. For more information, visit us at sanfordburnham.org.
Sanford-Burnham researchers identify target to prevent hardening of arteries
The gene Dkk1 encodes a protein that plays a key role in increasing the population of connective-tissue cells during wound repair, but prolonged Dkk1 signaling can lead to fibrosis and a stiffening of artery walls
2013-05-17
ELSE PRESS RELEASES FROM THIS DATE:
World's biggest ice sheets likely more stable than previously believed
2013-05-17
For decades, scientists have used ancient shorelines to predict the stability of today's largest ice sheets in Greenland and Antarctica. Markings of a high shoreline from three million years ago, for example – when Earth was going through a warm period – were thought to be evidence of a high sea level due to ice sheet collapse at that time. This assumption has led many scientists to think that if the world's largest ice sheets collapsed in the past, then they may do just the same in our modern, progressively warming world.
However, a new groundbreaking study now challenges ...
Women with chronic physical disabilities are no less likely to bear children
2013-05-17
Philadelphia, Pa. (May 16, 2013) – Like the general public, health care professionals may hold certain stereotypes regarding sexual activity and childbearing among women with disabilities. But a new study finds that women with chronic physical disabilities are about as likely as nondisabled women to say they are currently pregnant, after age and other sociodemographic factors are taken into account. The findings are reported in the June issue of Medical Care, published by Lippincott Williams & Wilkins, a part of Wolters Kluwer Health.
Health care professionals can expect—and ...
Beautiful 'flowers' self-assemble in a beaker
2013-05-17
"Spring is like a perhaps hand," wrote the poet E. E. Cummings: "carefully / moving a perhaps / fraction of flower here placing / an inch of air there... / without breaking anything."
With the hand of nature trained on a beaker of chemical fluid, the most delicate flower structures have been formed in a Harvard laboratory—and not at the scale of inches, but microns.
These minuscule sculptures, curved and delicate, don't resemble the cubic or jagged forms normally associated with crystals, though that's what they are. Rather, fields of carnations and marigolds seem to ...
Artificial forest for solar water-splitting
2013-05-17
In the wake of the sobering news that atmospheric carbon dioxide is now at its highest level in at least three million years, an important advance in the race to develop carbon-neutral renewable energy sources has been achieved. Scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have reported the first fully integrated nanosystem for artificial photosynthesis. While "artificial leaf" is the popular term for such a system, the key to this success was an "artificial forest."
"Similar to the chloroplasts in green plants ...
Can math models of gaming strategies be used to detect terrorism networks?
2013-05-17
Philadelphia, PA— The answer is yes, according to a paper in the SIAM Journal on Discrete Mathematics.
In a paper published in the journal last month, authors Anthony Bonato, Dieter Mitsche, and Pawel Pralat describe a mathematical model to disrupt flow of information in a complex real-world network, such as a terrorist organization, using minimal resources.
Terror networks are comparable in their structure to hierarchical organization in companies and certain online social networks, where information flows in one direction from a source, which produces the information ...
Gene involved in neurodegeneration keeps clock running
2013-05-17
Northwestern University scientists have shown a gene involved in neurodegenerative disease also plays a critical role in the proper function of the circadian clock.
In a study of the common fruit fly, the researchers found the gene, called Ataxin-2, keeps the clock responsible for sleeping and waking on a 24-hour rhythm. Without the gene, the rhythm of the fruit fly's sleep-wake cycle is disturbed, making waking up on a regular schedule difficult for the fly.
The discovery is particularly interesting because mutations in the human Ataxin-2 gene are known to cause ...
Body mass index of low income African-Americans linked to proximity of fast food restaurants
2013-05-17
HOUSTON – African-American adults living closer to a fast food restaurant had a higher body mass index (BMI) than those who lived further away from fast food, according to researchers at The University of Texas MD Anderson Cancer Center, and this association was particularly strong among those with a lower income.
A new study published online in the American Journal of Public Health indicates higher BMI associates with residential proximity to a fast food restaurant, and among lower-income African-Americans, the density, or number, of fast food restaurants within two ...
Research into carbon storage in Arctic tundra reveals unexpected insight into ecosystem resiliency
2013-05-17
(Santa Barbara, Calif.) –– When UC Santa Barbara doctoral student Seeta Sistla and her adviser, environmental studies professor Josh Schimel, went north not long ago to study how long-term warming in the Arctic affects carbon storage, they had made certain assumptions.
"We expected that because of the long-term warming, we would have lost carbon stored in the soil to the atmosphere," said Schimel. The gradual warming, he explained, would accelerate decomposition on the upper layers of what would have previously been frozen or near-frozen earth, releasing the greenhouse ...
Bach to the blues, our emotions match music to colors
2013-05-17
Whether we're listening to Bach or the blues, our brains are wired to make music-color connections depending on how the melodies make us feel, according to new research from the University of California, Berkeley. For instance, Mozart's jaunty Flute Concerto No. 1 in G major is most often associated with bright yellow and orange, whereas his dour Requiem in D minor is more likely to be linked to dark, bluish gray.
Moreover, people in both the United States and Mexico linked the same pieces of classical orchestral music with the same colors. This suggests that humans ...
Healthy companies and healthy regions: Connecting the dots
2013-05-17
In today's virtual world, it's easy to downplay the significance of place. Yet when it comes to regional prosperity, geography matters. Income and job growth is not random but rather spill over from one region to another, meaning that merely being next to a prosperous region will make your own economy more vibrant.
This may sound like a no-brainer, but until recently it's been hard to prove from a statistical perspective. Yet by using new models that factor in location and blending microeconomic ideas with macro ones, researchers at the Edward Lowe Foundation's Institute ...
LAST 30 PRESS RELEASES:
Injectable breast ‘implant’ offers alternative to traditional surgeries
Neuroscientists devise formulas to measure multilingualism
New prostate cancer trial seeks to reduce toxicity without sacrificing efficacy
Geometry shapes life
A CRISPR screen reveals many previously unrecognized genes required for brain development and a new neurodevelopmental disorder
Hot flush treatment has anti-breast cancer activity, study finds
Securing AI systems against growing cybersecurity threats
Longest observation of an active solar region
Why nail-biting, procrastination and other self-sabotaging behaviors are rooted in survival instincts
Regional variations in mechanical properties of porcine leptomeninges
Artificial empathy in therapy and healthcare: advancements in interpersonal interaction technologies
Why some brains switch gears more efficiently than others
UVA’s Jundong Li wins ICDM’S 2025 Tao Li Award for data mining, machine learning
UVA’s low-power, high-performance computer power player Mircea Stan earns National Academy of Inventors fellowship
Not playing by the rules: USU researcher explores filamentous algae dynamics in rivers
Do our body clocks influence our risk of dementia?
Anthropologists offer new evidence of bipedalism in long-debated fossil discovery
Safer receipt paper from wood
Dosage-sensitive genes suggest no whole-genome duplications in ancestral angiosperm
First ancient human herpesvirus genomes document their deep history with humans
Why Some Bacteria Survive Antibiotics and How to Stop Them - New study reveals that bacteria can survive antibiotic treatment through two fundamentally different “shutdown modes”
UCLA study links scar healing to dangerous placenta condition
CHANGE-seq-BE finds off-target changes in the genome from base editors
The Journal of Nuclear Medicine Ahead-of-Print Tip Sheet: January 2, 2026
Delayed or absent first dose of measles, mumps, and rubella vaccination
Trends in US preterm birth rates by household income and race and ethnicity
Study identifies potential biomarker linked to progression and brain inflammation in multiple sclerosis
Many mothers in Norway do not show up for postnatal check-ups
Researchers want to find out why quick clay is so unstable
Superradiant spins show teamwork at the quantum scale
[Press-News.org] Sanford-Burnham researchers identify target to prevent hardening of arteriesThe gene Dkk1 encodes a protein that plays a key role in increasing the population of connective-tissue cells during wound repair, but prolonged Dkk1 signaling can lead to fibrosis and a stiffening of artery walls