(Press-News.org) On March 11, 2011, a magnitude 9.0 undersea earthquake occurred 43 miles off the shore of Japan. The earthquake generated an unexpectedly massive tsunami that washed over eastern Japan roughly 30 minutes later, killing more than 15,800 people and injuring more than 6,100. More than 2,600 people are still unaccounted for.
Now, computer simulations by Stanford scientists reveal that sound waves in the ocean produced by the earthquake probably reached land tens of minutes before the tsunami. If correctly interpreted, they could have offered a warning that a large tsunami was on the way.
Although various systems can detect undersea earthquakes, they can't reliably tell which will form a tsunami, or predict the size of the wave. There are ocean-based devices that can sense an oncoming tsunami, but they typically provide only a few minutes of advance warning.
Because the sound from a seismic event will reach land well before the water itself, the researchers suggest that identifying the specific acoustic signature of tsunami-generating earthquakes could lead to a faster-acting warning system for massive tsunamis.
Discovering the signal
The finding was something of a surprise. The earthquake's epicenter had been traced to the underwater Japan Trench, a subduction zone about 40 miles east of Tohoku, the northeastern region of Japan's larger island. Based on existing knowledge of earthquakes in this area, seismologists puzzled over why the earthquake rupture propagated from the underground fault all the way up to the seafloor, creating a massive upward thrust that resulted in the tsunami.
Direct observations of the fault were scarce, so Eric Dunham, an assistant professor of geophysics in the School of Earth Sciences, and Jeremy Kozdon, a postdoctoral researcher working with Dunham, began using the cluster of supercomputers at Stanford's Center for Computational Earth and Environmental Science (CEES) to simulate how the tremors moved through the crust and ocean.
The researchers built a high-resolution model that incorporated the known geologic features of the Japan Trench and used CEES simulations to identify possible earthquake rupture histories compatible with the available data.
Retroactively, the models accurately predicted the seafloor uplift seen in the earthquake, which is directly related to tsunami wave heights, and also simulated sound waves that propagated within the ocean.
In addition to valuable insight into the seismic events as they likely occurred during the 2011 earthquake, the researchers identified the specific fault conditions necessary for ruptures to reach the seafloor and create large tsunamis.
The model also generated acoustic data; an interesting revelation of the simulation was that tsunamigenic surface-breaking ruptures, like the 2011 earthquake, produce higher amplitude ocean acoustic waves than those that do not.
The model showed how those sound waves would have traveled through the water and indicated that they reached shore 15 to 20 minutes before the tsunami.
"We've found that there's a strong correlation between the amplitude of the sound waves and the tsunami wave heights," Dunham said. "Sound waves propagate through water 10 times faster than the tsunami waves, so we can have knowledge of what's happening a hundred miles offshore within minutes of an earthquake occurring. We could know whether a tsunami is coming, how large it will be and when it will arrive."
Worldwide application
The team's model could apply to tsunami-forming fault zones around the world, though the characteristics of telltale acoustic signature might vary depending on the geology of the local environment. The crustal composition and orientation of faults off the coasts of Japan, Alaska, the Pacific Northwest and Chile differ greatly.
"The ideal situation would be to analyze lots of measurements from major events and eventually be able to say, 'this is the signal'," said Kozdon, who is now an assistant professor of applied mathematics at the Naval Postgraduate School. "Fortunately, these catastrophic earthquakes don't happen frequently, but we can input these site specific characteristics into computer models – such as those made possible with the CEES cluster – in the hopes of identifying acoustic signatures that indicates whether or not an earthquake has generated a large tsunami."
Dunham and Kozdon pointed out that identifying a tsunami signature doesn't complete the warning system. Underwater microphones called hydrophones would need to be deployed on the seafloor or on buoys to detect the signal, which would then need to be analyzed to confirm a threat, both of which could be costly. Policymakers would also need to work with scientists to settle on the degree of certainty needed before pulling the alarm.
If these points can be worked out, though, the technique could help provide precious minutes for an evacuation.
The study is detailed in the current issue of the journal the Bulletin of the Seismological Society of America.
INFORMATION:
Video available at: http://youtu.be/4YxKSQvqgy8
END
If one looks only for the shiniest pennies in the fountain, chances are one misses most of the coins because they shimmer less brightly. This, in a nutshell, is the conundrum astronomers face when searching for Earth-like planets outside our solar system.
Astronomers at the University of Arizona are part of an international team of exoplanets hunters developing new technology that would dramatically improve the odds of discovering planets with conditions suitable for life – such as having liquid water on the surface.
The team presented its results at a scientific conference ...
VIDEO:
This 3-D view from the west was derived from TRMM Precipitation Radar (PR) data captured when Andrea was examined by the TRMM satellite with the June 5, 2234 UTC (6:34...
Click here for more information.
Towering thunderstorms are a sign of a strong tropical cyclone, and NASA's TRMM satellite spotted thunderstorms reaching heights of almost 9 miles high within Tropical Storm Andrea. NASA's Aqua satellite provided an infrared view that revealed very cold cloud top ...
Cold Spring Harbor, NY -- In our daily lives, clutter is something that gets in our way, something that makes it harder for us to accomplish things. For doctors and scientists trying to parse mountains of raw biological data, clutter is more than a nuisance; it can stand in the way of figuring out how best to treat someone who is very sick.
Using increasingly cheap and rapid methods to read the billions of "letters" that comprise human genomes – including the genomes of individual cells sampled from cancerous tumors -- scientists are generating far more data than they ...
Remora fish, with a sucking disc on top of their heads, have been the stuff of legend. They often attach themselves to the hulls of boats and in ancient times were thought to purposely slow the boat down. While that is a misunderstanding, something else not well understood was the origins of the fish's odd sucking disc. Scientists at the Smithsonian Institution and London's Natural History Museum, however, have solved that mystery proving that the disc is actually a greatly modified dorsal fin. The research is published in the Journal of Morphology.
The world's eight ...
(Lebanon, NH, 6/5/13) — Through genetic engineering of laboratory models, researchers at Dartmouth-Hitchcock Norris Cotton Cancer Center have uncovered a vulnerability in the way cancer cells diverge from normal regenerating cells that may help treat children with leukemia as reported in the journal PNAS on June 3, 2013. Dartmouth researchers are trying to understand the key pathways that distinguish how a normal blood cell grows and divides compared to the altered growth that occurs in leukemia. In addition to the treatment of leukemia, the work has relevance for expanding ...
CHAMPAIGN, Ill. — Researchers have found that a type of predatory sea slug that usually isn't picky when it comes to what it eats has more complex cognitive abilities than previously thought, allowing it to learn the warning cues of dangerous prey and thereby avoid them in the future.
The research appears in the Journal of Experimental Biology.
Pleurobranchaea californica is a deep-water species of sea slug found off the west coast of the United States. It has a relatively simple neural circuitry and set of behaviors. It is a generalist feeder, meaning, as University ...
CINCINNATI – As modern medical advances help more children with complex conditions live longer, a new study shows a significant number suffer from complications caused by medical devices that are also necessary for their survival.
Researchers report their findings online June 7 in the Journal of Hospital Medicine. Study authors say their research underscores the continued need to improve care for this growing population of children by enhancing medical device safety practices and ensuring device design is suitable or adaptable for pediatric patients.
"Medicine and pediatrics ...
New research has found that routine screening using a non-invasive test that analyzes fetal DNA in a pregnant woman's blood can accurately detect Down's syndrome and other genetic fetal abnormalities in the first trimester. Published early online in Ultrasound in Obstetrics & Gynecology, the results suggest that the test is superior to currently available screening strategies and could reshape standards in prenatal testing.
Current screening for Down's syndrome, or trisomy 21, and other trisomy conditions includes a combined test done between the 11th and 13th weeks ...
Philadelphia, PA, June 7, 2013 – The average 5-year survival for colorectal cancer (CRC) is less than 10% if metastasis occurs, but can reach 90% if detected early. A new non-invasive test has been developed that measures methylation of the SDC2 gene in tissues and blood sera. This test detected 87% of all stages of colorectal cancer cases (sensitivity) without significant difference between early and advanced stages, while correctly identifying 95% of disease-free patients (specificity). The results are published in the July issue of The Journal of Molecular Diagnostics.
According ...
VIDEO:
This is what happens when the essential gene Umbrea is removed from fruit fly cells: cell death. A group of molecular biologists, including assistant professor Barbara Mellone at UConn's College...
Click here for more information.
Researchers from UConn and other institutions in the U.S. and abroad have shown how a relatively young gene can acquire a new function and become essential to an organism's life.
Using a combination of techniques, including phylogenetics, ...