(Press-News.org) In 2000, researchers at the UCLA Center for Sleep Research published findings showing that people suffering from narcolepsy, a disorder characterized by uncontrollable periods of deep sleep, had 90 percent fewer neurons containing the neuropeptide hypocretin in their brains than healthy people. The study was the first to show a possible biological cause of the disorder.
Subsequent work by this group and others demonstrated that hypocretin is an arousing chemical that keeps us awake and elevates both mood and alertness; the death of hypocretin cells, the researchers said, helps explain the sleepiness of narcolepsy. But it has remained unclear what kills these cells.
Now the same UCLA team reports that an excess of another brain cell type — this one containing histamine — may be the cause of the loss of hypocretin cells in human narcoleptics.
UCLA professor of psychiatry Jerome Siegel and colleagues report in the current online edition of the journal Annals of Neurology that people with the disorder have nearly 65 percent more brain cells containing the chemical histamine. Their research suggests that this excess of histamine cells causes the loss of hypocretin cells in human narcoleptics.
Narcolepsy is a chronic disorder of the central nervous system characterized by the brain's inability to control sleep–wake cycles. It causes sudden bouts of sleep and is often accompanied by cataplexy, an abrupt loss of voluntary muscle tone that can cause a person to collapse. According to the National Institutes of Health, narcolepsy is thought to affect roughly one in every 3,000 Americans. Currently, there is no cure.
Histamine is a body chemical that works as part of the immune system to kill invading cells. When the immune system goes awry, histamine can act on a person's eyes, nose, throat, lungs, skin or gastrointestinal tract, causing the symptoms of allergy that many people are familiar with. But histamine is also present in a type of brain cell.
For the study, researchers examined five narcoleptic brains and seven control brains from human cadavers. Prior to death, all the narcoleptics had been diagnosed by a sleep disorder center as having narcolepsy with cataplexy. These brains were also compared with the brains of three narcoleptic mouse models and to the brains of narcoleptic dogs.
The researchers found that the humans with narcolepsy had an average of 64 percent more histamine neurons. Interestingly, the team did not see an increased number of these cells in any of the animal models of narcolepsy.
"Humans and animals with narcolepsy share the same symptoms, but we did not see the histamine cell changes we saw in humans in the animal models we examined," said Siegel, who directs the Center for Sleep Research at the UCLA Semel Institute for Neuroscience and Human Behavior and is the senior author of the research. "We know that narcolepsy in the animal models is caused by engineered genetic changes that block hypocretin function. However, in humans, we did not know why the hypocretin cells die.
"Our current findings indicate that the increase of histamine cells that we see in human narcolepsy may cause the loss of hypocretin cells," he said.
The study results may also further our understanding of brain plasticity, Siegel noted. While scientists have known of the existence of neurogenesis — the process by which the brain is populated with new neurons — it was thought to function mainly to replace existing cells that had died.
"This paper shows for the first time that neuronal numbers can increase greatly and not just serve as replacement cells," he said. "In the current example, this appears to be pathological with the destruction of hypocretin, but in other circumstances, it may underlie recovery and learning and open new routes to treatment of a number of neurological disorders."
###
Siegel is also the chief of neurobiology research at the Sepulveda Veterans Affairs Medical Center in Mission Hills, Calif. Other authors on the study included Joshi John (first author), Thomas C. Thannickal, Ronald McGregor, Lalini Ramanathan and Carly Stone of UCLA; Marcia Cornford of Harbor–UCLA Medical Center; Hiroshi Ohtsu of Japan's Tohoku University; Seiji Nishino and Noriaki Sakai of Stanford University; and Akhiro Yamanaka of Japan's Nagoya University.
Funding for the study was provided by the Medical Research Service of the U.S. Department of Veterans Affairs (grants NS14610 and MH064109).
The UCLA Department of Psychiatry and Biobehavioral Sciences is the home within the David Geffen School of Medicine at UCLA for faculty who are experts in the origins and treatment of disorders of complex human behavior. The department is part of the Semel Institute for Neuroscience and Human Behavior at UCLA, a world-leading interdisciplinary research and education institute devoted to the understanding of complex human behavior and the causes and consequences of neuropsychiatric disorders.
For more news, visit the UCLA Newsroom and follow us on Twitter.
UCLA researchers find new clue to cause of human narcolepsy
2013-07-03
ELSE PRESS RELEASES FROM THIS DATE:
Growth, not just size, boosts brain aneurysms' risk of bursting
2013-07-03
Brain aneurysms of all sizes — even small ones the size of a pea — are up to 12 times more likely to rupture if they are growing, according to a new UCLA study.
Published July 2 in the online edition of the journal Radiology, the discovery counters current guidelines suggesting that small aneurysms pose a low risk for rupture, and it emphasizes the need for regular monitoring and earlier treatment.
"Until now, we believed that large aneurysms presented the highest risk for rupture and that smaller aneurysms may not require monitoring," said lead author Dr. J. Pablo ...
Novel chemistry for new class of antibiotic
2013-07-03
University of Adelaide research has produced a potential new antibiotic which could help in the battle against bacterial resistance to antibiotics.
The potential new antibiotic targets a bacterial enzyme critical to metabolic processes.
The compound is a protein inhibitor which binds to the enzyme (called biotin protein ligase), stopping its action and interrupting the life cycle of the bacteria.
"Existing antibiotics target the bacterial cell membranes but this potential new antibiotic operates in a completely different way," says Professor Andrew Abell, project ...
Scientists decode the genomic sequence of 700,000-year-old horse
2013-07-03
July 3, 2013, Shenzhen, China – The international team, which included researchers from University of Copenhagen, BGI and other institutes, has successfully sequenced and analyzed the short pieces of DNA preserved in bone-remnants from a horse frozen for the last 700,000 years in the permafrost of Yukon, Canada. This is the oldest genome reported so far, which is ten times as old as the ancient Denisovan genome reported in last year. The work here laid a solid foundation for researchers to further decode other extinct species and clarify biology evolution.
The Thistle ...
Shape-shifting disease proteins may explain variable appearance of neurodegenerative diseases
2013-07-03
PHILADELPHIA - Neurodegenerative diseases are not all alike. Two individuals suffering from the same disease may experience very different age of onset, symptoms, severity, and constellation of impairments, as well as different rates of disease progression. Researchers in the Perelman School of Medicine at the University of Pennsylvania have shown one disease protein can morph into different strains and promote misfolding of other disease proteins commonly found in Alzheimer's, Parkinson's and other related neurodegenerative diseases.
Virginia M.Y. Lee, PhD, MBA, professor ...
First supper is a life changer for lizards
2013-07-03
For young lizards born into this unpredictable world, their very first meal can be a major life changer. So say researchers who report evidence on July 3 in Current Biology, a Cell Press publication, that this early detail influences how the lizards disperse from their birthplaces, how they grow, and whether they survive. A quick or slow meal even influences the lizards' reproductive success two years later in a surprising way.
The findings demonstrate something very important: fleeting moments in time really can change the lives of individuals and the evolutionary paths ...
DNA markers in low-IQ autism suggest heredity
2013-07-03
PROVIDENCE, R.I. [Brown University] — Researchers are striving to understand the different genetic structures that underlie at least a subset of autism spectrum disorders. In cases where the genetic code is in error, did that happen anew in the patient, perhaps through mutation or copying error, or was it inherited? A new study in the American Journal of Human Genetics finds evidence that there may often be a recessive, inherited genetic contribution in autism with significant intellectual disability.
The authors also make predictions in the study regarding how far back ...
Scientists identify genetic cause of 'spongy' skin condition
2013-07-03
Scientists have identified the genetic cause of a rare skin condition that causes the hands and feet to turn white and spongy when exposed to water.
The study, led by researchers from Queen Mary, University of London, has provided scientists with an insight into how the skin barrier functions and could help with research into a variety of conditions.
Diffuse non-epidermolytic palmoplantar keratoderma (NEPPK) is a rare condition in which individuals have thickened, yellowish skin over their palms and soles, thickened nails and suffer from excessive sweating. When their ...
Evolution's toolkit seen in developing hands and arms
2013-07-03
Thousands of sequences that control genes are active in the developing human limb and may have driven the evolution of the human hand and foot, a comparative genomics study led by Yale School of Medicine researchers has found
The research, published online July 3 in the journal Cell, does not pinpoint the exact genetic mechanisms that control development of human limbs, but instead provides scientists with the first genome-wide view of candidates to investigate.
"We now have a parts list that may account for these biological changes," said James P. Noonan, associate ...
New mechanism for human gene expression discovered
2013-07-03
In a study that could change the way scientists view the process of protein production in humans, University of Chicago researchers have found a single gene that encodes two separate proteins from the same sequence of messenger RNA.
Published online July 3 in Cell, their finding elucidates a previously unknown mechanism in human gene expression and opens the door for new therapeutic strategies against a thus-far untreatable neurological disease.
"This is the first example of a mechanism in a higher organism in which one gene creates two proteins from the same mRNA transcript, ...
Scientists identify gene that controls aggressiveness in breast cancer cells
2013-07-03
CAMBRIDGE, Mass. (July 3, 2013) – In a discovery that sheds new light on the aggressiveness of certain breast cancers, Whitehead Institute researchers have identified a transcription factor, known as ZEB1, that is capable of converting non-aggressive basal-type cancer cells into highly malignant, tumor-forming cancer stem cells (CSCs). Intriguingly, luminal breast cancer cells, which are associated with a much better clinical prognosis, carry this gene in a state in which it seems to be permanently shut down.
The researchers, whose findings are published this week ...