(Press-News.org) PROVIDENCE, R.I. [Brown University] — RNA editing gives organisms a way to adapt the instructions that their DNA provides for making proteins. Few people would have described RNA editing as a simple process, but a new paper in Nature Communications demonstrates the process as more complex and difficult to predict than previously assumed. The study, done in living fruit flies, discovered two new mechanisms that govern editing in a key neurodevelopmental gene.
RNA editing is governed not only by sequences of RNA nucleotides (the letters A, C, G, and U) and corresponding structures near to the editing sites in the RNA molecule, as biologists had already suspected, but also by these newly described sequences and structures that are quite far away.
With new mechanisms also come new opportunities to influence RNA editing perhaps to combat disease, the Brown University researchers and their collaborators note.
Working in the model fruit fly gene para, which encodes expression of sodium channels in neurons, the biologists found two important sequences that give rise to these editing-altering mechanisms. Both exist in introns, which are sections genetic code that do not contain the actual instructions for making protein, but appear instead to have information about what to do with those instructions.
One new intronic sequence, the paper shows, forms a previously unknown 3-D structure that changes how the editing enzyme dADAR docks to an RNA molecule. From this alternate site, it edits a key nucleotide at particular site of para. The paper also describes another distant intronic sequence containing information about splicing, the process of cutting out and reassembling RNA into the full code for making a protein. With mutations, the scientists found, the sequence can be controlled like a tuning knob to either increase or decrease editing at the distant editing site.
"This is a cautionary tale where only looking for 2-D structures to predict where editing sites will be and how they will be regulated is going to be problematic," said Robert Reenan, corresponding author of the paper and professor of biology in Brown's Department of Molecular Biology, Cellular Biology and Biochemistry. "It looks like there is a lot more information contained in the introns as to the regulation of the editing than we previously thought."
In living flies, Reenan and his team confirmed that altering RNA editing could have specific and stark physiological consequences. RNA editing, after all, can matter dramatically to the neurodevelopment of creatures ranging from fruit flies to people.
Discovering a 'pseudoknot'
The first structure appears in the paper's schematics as a huge arm-like offshoot from the RNA strand. At its tip is a ring-shaped sequence of just seven nucleotides and a complimentary outer ring of seven more. dADAR can dock there and perform its editing from a different position than it does when the structure does not form. Reenan and his co-authors call this structure a "pseudoknot." Its presence proved essential for editing a particular nucleotide.
While the raw sequence of nucleotide letters was known, no one knew what it could form or what that meant. Computer programs that scientists use to make those structural predictions about RNA struggle with the third dimension, especially when thousands of nucleotide letters are involved.
Reenan, however, has focused on the para gene and its expression for almost 25 years. One day in 2008, when he was puzzling over para RNA in the old thesis of a former student, he noticed that this set of seven nucleotides had a perfectly complimentary sequence. It could have meant nothing, but what was important about these sequences is that they are found in every one of 37 different fruit fly species his lab has studied.
As he reasoned through potential implications of these highly conserved, matching sequences, he started searching the literature. He found a paper published by coincidence that very day by Yale researcher Anna Marie Pyle in Science. It described a structure found in an extremophilic bacterium that was remarkably similar, differing by only a few nucleotides.
That similar-but-not-identical bacterial structure gave him an opportunity to determine the role of the fly pseudoknot. Study lead author Leila Rieder used the bacterial structure to conduct a mutation-countermutation experiment. She replaced just the inner ring with the bacterial one and found that flies lost their ability to edit the target nucleotide. The same consequences occurred when she replaced just the outer ring with the bacterial one. But when she replaced both the outer and inner rings, editing was perfectly restored. The two matching sequences indeed worked together to enable editing.
"By putting in two different parts and restoring the editing interaction we showed that right there, at exactly that point, that interaction [between the two parts of the pseudoknot] are what has to occur for editing that site, " Reenan said. "Nothing else will do,"
Splicing vs. editing
The other editing-tweaking sequence, called DCS in the paper, is similarly distant from the editing sites but works indirectly to govern editing. What it explicitly seems to control is splicing, perhaps by acting as a brake on that process. When splicing is highly active, the intron sequences (including the important elements) are cut out and no editing therefore occurs. When splicing is more laid back, the intron sequences remain, orchestrating editing, and dADAR can work on them longer.
In their experiments the researcher found that when they got rid of DCS, editing was substantially reduced. When they enhanced it with extra nucleotides it to make it longer and more stable, too much editing occurred. Flies with enhanced DCS ended up with serious health problems including death or paralysis.
Not surprisingly, flies left natural appeared to have a balance of splicing and editing somewhere in a happy medium of normal health.
On one hand the results suggest that biologists can't predict RNA editing simply by analyzing the RNA near editing sites. On the other hand, they now have new mechanisms, albeit complex ones, that provide new opportunities for tuning the editing process.
"Our data on complex tertiary interactions could assist in the design of artificial editing substrates, enabling the co-option of endogenous ADAR enzymes as tools in specific RNA therapies," the authors wrote in Nature Communications.
INFORMATION:
In addition to Reenan and Rieder, the paper's other authors are Cynthia Staber of Stowers Institute for Medical Research in Kansas City, and Barry Hoopengardner Central Connecticut State University.
The National Science Foundation supported the research with a Graduate Research Fellowshop (DGE 0228243).
Fly study finds 2 new drivers of RNA editing
2013-08-01
ELSE PRESS RELEASES FROM THIS DATE:
Ultrasound patch heals venous ulcers in human trial
2013-08-01
In a small clinical study, researchers administered a new method for treating chronic wounds using a novel ultrasound applicator that can be worn like a band-aid. The applicator delivers low-frequency, low-intensity ultrasound directly to wounds, and was found to significantly accelerate healing in five patients with venous ulcers. Venous ulcers are caused when valves in the veins malfunction, causing blood to pool in the leg instead of returning to the heart. This pooling, called venous stasis, can cause proteins and cells in the vein to leak into the surrounding tissue ...
New designer compound treats heart failure by targeting cell nucleus
2013-08-01
Researchers from Case Western Reserve University School of Medicine and the Dana-Farber Cancer Institute have made a fundamental discovery relevant to the understanding and treatment of heart failure – a leading cause of death worldwide. The team discovered a new molecular pathway responsible for causing heart failure and showed that a first-in-class prototype drug, JQ1, blocks this pathway to protect the heart from damage.
In contrast to standard therapies for heart failure, JQ1 works directly within the cell's command center, or nucleus, to prevent damaging stress responses. ...
When galaxies switch off
2013-08-01
Some galaxies hit a point in their lives when their star formation is snuffed out, and they become "quenched". Quenched galaxies in the distant past appear to be much smaller than the quenched galaxies in the Universe today. This has always puzzled astronomers -- how can these galaxies grow if they are no longer forming stars? A team of astronomers has now used a huge set of Hubble observations to give a surprisingly simple answer to this long-standing cosmic riddle.
Until now, these small, snuffed-out galaxies were thought to grow into the larger quenched galaxies we ...
Nice organisms finish first: Why cooperators always win in the long run
2013-08-01
Leading physicists last year turned game theory on its head by giving selfish players a sure bet to beat cooperative players. Now two evolutionary biologists at Michigan State University offer new evidence that the selfish will die out in the long run.
"We found evolution will punish you if you're selfish and mean," said lead author Christoph Adami, MSU professor of microbiology and molecular genetics. "For a short time and against a specific set of opponents, some selfish organisms may come out ahead. But selfishness isn't evolutionarily sustainable."
The paper "Evolutionary ...
Potential nutritional therapy for childhood neurodegenerative disease
2013-08-01
Researchers at the University of California, San Diego School of Medicine have identified the gene mutation responsible for a particularly severe form of pontocerebellar hypoplasia, a currently incurable neurodegenerative disease affecting children. Based on results in cultured cells, they are hopeful that a nutritional supplement may one day be able to prevent or reverse the condition.
The study, from a team of international collaborators led by Joseph G. Gleeson, MD – Howard Hughes Medical Institute investigator and professor in the UCSD Departments of Neurosciences ...
A week's worth of camping synchs internal clock to sunrise and sunset, CU-Boulder study finds
2013-08-01
Spending just one week exposed only to natural light while camping in the Rocky Mountains was enough to synch the circadian clocks of eight people participating in a University of Colorado Boulder study with the timing of sunrise and sunset.
The study, published online today in the journal Current Biology, found that the synchronization happened in that short period of time for all participants, regardless of whether they were early birds or night owls during their normal lives.
"What's remarkable is how, when we're exposed to natural sunlight, our clocks perfectly ...
Stray prenatal gene network suspected in schizophrenia
2013-08-01
Researchers have reverse-engineered the outlines of a disrupted prenatal gene network in schizophrenia, by tracing spontaneous mutations to where and when they likely cause damage in the brain. Some people with the brain disorder may suffer from impaired birth of new neurons, or neurogenesis, in the front of their brain during prenatal development, suggests the study, which was funded by the National Institutes of Health.
"Processes critical for the brain's development can be revealed by the mutations that disrupt them," explained Mary-Claire King, Ph.D., University ...
New target for the fight against cancer as a result of excessive blood vessel formation
2013-08-01
New blood vessel formation (angiogenesis) stimulates the growth of cancer and other diseases. Anti-angiogenic inhibitors slow down cancer growth by disrupting the blood supply to the tumor. To date, the success of these treatments is limited by resistance, poor efficiency and harmful side effects. In the leading scientific journal Cell, Peter Carmeliet (VIB-KU Leuven) and his team reported that sugar metabolism (a process that we call glycolysis) also plays an essential role in the formation of new blood vessels. These totally revolutionary insights open up many new therapeutic ...
'Evolution will punish you if you're selfish and mean'
2013-08-01
EAST LANSING, Mich. — Two Michigan State University evolutionary biologists offer new evidence that evolution doesn't favor the selfish, disproving a theory popularized in 2012.
"We found evolution will punish you if you're selfish and mean," said lead author Christoph Adami, MSU professor of microbiology and molecular genetics. "For a short time and against a specific set of opponents, some selfish organisms may come out ahead. But selfishness isn't evolutionarily sustainable."
The paper appears in the current issue of Nature Communications and focuses on game theory, ...
New insight into how brain 'learns' cocaine addiction
2013-08-01
A team of researchers says it has solved the longstanding puzzle of why a key protein linked to learning is also needed to become addicted to cocaine. Results of the study, published in the Aug. 1 issue of the journal Cell, describe how the learning-related protein works with other proteins to forge new pathways in the brain in response to a drug-induced rush of the "pleasure" molecule dopamine. By adding important detail to the process of addiction, the researchers, led by a group at Johns Hopkins, say the work may point the way to new treatments.
"The broad question ...