(Press-News.org) This is a veritable mechanics of aggression on the nanoscale. Certain bacteria, including Staphylococcus aureus, have the ability to deploy tiny darts. This biological weapon kills the host cell by piercing the membrane. Researchers at EPFL have dismantled, piece by piece, this intriguing little machine and found an assembly of proteins that, in unfolding at the right time, takes the form of a spur. Published in Nature Chemical Biology, this discovery offers new insight into the fight against pathogens that are increasingly resistant to antibiotics.
To attack the host cell, the weapon must first attach. On the surface of the aggressor is a mechanism composed of seven proteins that are folded over and assembled into a ring. The researchers were able to show how, in time, these long molecules unfold to form a kind of spur.
The trigger is just another part of the machine – a peptide, or a small organic molecule. When exposed to the enzymes of the host organism, it detaches. The balance of the assembly adjusts: the proteins adopt a new form, spreading out in a circular motion to form a spur, which then pierces the membrane of the host cell.
Mechanical at the molecular level
No chemical reaction is involved in these biological weapons. This is a mechanical phenomenon, albeit on the molecular level. Matteo Dal Peraro, co-author of this study, also uses the term "nanomachine" to refer to this tool of aggression.
The EPFL researchers have worked on strains of Aeromonas hydrophila – a bacterium well-known among travelers for the intestinal disorders it causes. In Petri dishes the researchers could, at will, cause the formation of these darts, thereby exposing microorganisms to digestive enzymes. They were able to model precisely
how each protein dynamically rearranges, once the peptide is missing, to form the spur.
Hinder the attack mechanism
For co-author Gisou Van der Goot, this discovery opens new therapeutic perspectives, for example in cases of nosocomial infection staphylococci. "We could imagine catheters coated with substitute peptides," she says. "They could prevent the formation of the ring and, thus, the spur. We would avoid many hospital infections."
The concept is to address the weaponry of the bacteria rather than the bacteria itself. This is particularly attractive at a time when multiple antibiotic resistances are becoming increasingly common. "This approach would have the advantage of not causing mutations, and thereby resistance, in pathogenic bacteria," says the researcher.
### END
Researchers dismantle bacteria's war machinery
A nano-machine cell killer: EPFL researchers decipher the attack strategy of certain bacteria, including the infamous Staphylococcus aureus
2013-08-05
ELSE PRESS RELEASES FROM THIS DATE:
Disorder can improve the performance of plastic solar cells, Stanford scientists say
2013-08-05
Scientists have spent decades trying to build flexible plastic solar cells efficient enough to compete with conventional cells made of silicon. To boost performance, research groups have tried creating new plastic materials that enhance the flow of electricity through the solar cell. Several groups expected to achieve good results by redesigning pliant polymers of plastic into orderly, silicon-like crystals, but the flow of electricity did not improve.
Recently, scientists discovered that disorder at the molecular level actually improves the polymers' performance. Now ...
Materials break, then remake, bonds to build strength
2013-08-05
DURHAM, N.C. -- Microscopic tears in a new kind of man-made material may actually help the substance bulk up like a bodybuilder at the gym.
"We've shown how normally destructive mechanical forces can be channeled to bring about stronger materials," said Duke chemist Steve Craig, who led the research. "The material responses are like Silly Putty transforming into a solid as stiff as the cap of a pen or a runny liquid transforming into soft Jell-O."
Scientists could one day use the stress-induced strength from these new materials to make better fluids such as engine ...
Global investigation reveals true scale of ocean warming
2013-08-05
Warming oceans are causing marine species to change breeding times and shift homes with expected substantial consequences for the broader marine landscape, according to a new global study.
The three-year research project, funded by the National Centre for Ecological Analysis and Synthesis in California, has shown widespread systemic shifts in measures such as distribution of species and phenology – the timing of nature's calendar – on a scale comparable to or greater than those observed on land.
The report, Global imprint of climate change on marine life, will form ...
Distinct brain disorders biologically linked
2013-08-05
A team of researchers have shown that schizophrenia and a disorder associated with autism and learning difficulties share a common biological pathway. This is one of the first times that researchers have uncovered genetic evidence for the underlying causes of schizophrenia.
The team found that a disruption of the gene TOP3B, an exceedingly rare occurrence in most parts of the world, is fairly common in a uniquely genetically distinct founder population from North-eastern Finland. In this population, which has grown in relative isolation for several centuries, the disruption ...
Mechanism offers promising new approach for harnessing the immune system to fight cancer
2013-08-05
St. Jude Children's Research Hospital scientists have discovered a way to target the immune system to shrink or eliminate tumors in mice without causing autoimmune problems. Researchers also found evidence that the same mechanism may operate in humans. The study was published today in the advance online edition of Nature.
The findings provide a new target for ongoing efforts to develop immunotherapies to harness the immune system to fight cancer and other diseases.
The work focused on white blood cells called regulatory T cells. These specialized cells serve as the ...
Practice makes the brain's motor cortex more efficient, Pitt researchers say
2013-08-05
PITTSBURGH, Aug. 4, 2013 – Not only does practice make perfect, it also makes for more efficient generation of neuronal activity in the primary motor cortex, the area of the brain that plans and executes movement, according to researchers from the University of Pittsburgh School of Medicine. Their findings, published online today in Nature Neuroscience, showed that practice leads to decreased metabolic activity for internally generated movements, but not for visually guided motor tasks, and suggest the motor cortex is "plastic" and a potential site for the storage of motor ...
Mechanism that allows bacteria to infect plants may inspire cure for eye disease
2013-08-05
By borrowing a tool from bacteria that infect plants, scientists have developed a new approach to eliminate mutated DNA inside mitochondria—the energy factories within cells. Doctors might someday use the approach to treat a variety of mitochondrial diseases, including the degenerative eye disease Leber hereditary optic neuropathy (LHON). The research, published online today in Nature Medicine, was funded by the National Eye Institute (NEI), a part of the National Institutes of Health (NIH).
Mitochondria convert fuel from food into a form of energy that cells can use. ...
UCSB study finds climate change is causing modifications to marine life behavior
2013-08-05
(Santa Barbara, Calif.) — Oceans cover 71 percent of the Earth's surface, yet our knowledge of the impact of climate change on marine habitats is a mere drop in the proverbial ocean compared to terrestrial systems. An international team of scientists set out to change that by conducting a global meta-analysis of climate change impacts on marine systems.
Counter to previous thinking, marine species are shifting their geographic distribution toward the poles and doing so much faster than their land-based counterparts. The findings were published in Nature Climate Change.
The ...
Wistar scientists decipher structure of NatA, an enzyme complex that modifies most human proteins
2013-08-05
VIDEO:
The structure of NatA, an n-terminal acetyltransferase, is described in a paper published Aug. 4, 2013, in Nature Structural & Molecular Biology.
Click here for more information.
A team of researchers from Philadelphia and Norway has determined the structure of an enzyme complex that modifies one end of most human proteins and is made at elevated levels in numerous forms of cancer. A study in Nature Structural & Molecular Biology, led by researchers at The Wistar Institute, ...
MIT researchers reveal how the brain keeps eyes on the prize
2013-08-05
Cambridge-- As anyone who has traveled with young children knows, maintaining focus on distant goals can be a challenge. A new study from MIT suggests how the brain achieves this task, and indicates that the neurotransmitter dopamine may signal the value of long-term rewards. The findings may also explain why patients with Parkinson's disease — in which dopamine signaling is impaired — often have difficulty in sustaining motivation to finish tasks.
The work is described this week in the journal Nature.
Previous studies have linked dopamine to rewards, and have shown ...
LAST 30 PRESS RELEASES:
Fig trees convert atmospheric CO2 to stone
Intra-arterial tenecteplase for acute stroke after successful endovascular therapy
Study reveals beneficial microbes that can sustain yields in unfertilized fields
Robotic probe quickly measures key properties of new materials
Climate change cuts milk production, even when farmers cool their cows
Frozen, but not sealed: Arctic Ocean remained open to life during ice ages
Some like it cold: Cryorhodopsins
Demystifying gut bacteria with AI
Human wellbeing on a finite planet towards 2100: new study shows humanity at a crossroads
Unlocking the hidden biodiversity of Europe’s villages
Planned hydrogen refuelling stations may lead to millions of euros in yearly losses
Planned C-sections increase the risk of certain childhood cancers
Adults who have survived childhood cancer are at increased risk of severe COVID-19
Drones reveal extreme coral mortality after bleaching
New genetic finding uncovers hidden cause of arsenic resistance in acute promyelocytic leukemia
Native habitats hold the key to the much-loved smashed avocado’s future
Using lightning to make ammonia out of thin air
Machine learning potential-driven insights into pH-dependent CO₂ reduction
Physician associates provide safe care for diagnosed patients when directly supervised by a doctor
How game-play with robots can bring out their human side
Asthma: patient expectations influence the course of the disease
UNM physician tests drug that causes nerve tissue to emit light, enabling faster, safer surgery
New study identifies EMP1 as a key driver of pancreatic cancer progression and poor prognosis
XPR1 identified as a key regulator of ovarian cancer growth through autophagy and immune evasion
Flexible, eco-friendly electronic plastic for wearable tech, sensors
Can the Large Hadron Collider snap string theory?
Stuckeman professor’s new book explores ‘socially sustainable’ architecture
Synthetic DNA nanoparticles for gene therapy
New model to find treatments for an aggressive blood cancer
Special issue of Journal of Intensive Medicine analyzes non-invasive respiratory support
[Press-News.org] Researchers dismantle bacteria's war machineryA nano-machine cell killer: EPFL researchers decipher the attack strategy of certain bacteria, including the infamous Staphylococcus aureus