(Press-News.org) Surgery to relieve the damaging pressure caused by hemorrhaging in the brain is a perfect job for a robot.
That is the basic premise of a new image-guided surgical system under development at Vanderbilt University. It employs steerable needles about the size of those used for biopsies to penetrate the brain with minimal damage and suction away the blood clot that has formed.
The system is described in an article accepted for publication in the journal IEEE Transactions on Biomedical Engineering. It is the product of an ongoing collaboration between a team of engineers and physicians headed by Assistant Professor Robert J. Webster III and Assistant Professor of Neurological Surgery Kyle Weaver.
The odds of a person getting an intracerebral hemorrhage are one in 50 over his or her lifetime. When it does occur, 40 percent of the individuals die within a month. Many of the survivors have serious brain damage.
"When I was in college, my dad had a brain hemorrhage," said Webster. "Fortunately, he was one of the lucky few who survived and recovered fully. I'm glad I didn't know how high his odds of death or severe brain damage were at the time, or else I would have been even more scared than I already was."
Operations to "debulk" intracerebral hemorrhages are not popular among neurosurgeons: They know their efforts are not likely to make a difference, except when the clots are small and lie on the brain's surface where they are easy to reach. Surgeons generally agree that there is a clinical benefit from removing 25-50 percent of a clot but that benefit can be offset by the damage that is done to the surrounding tissue when the clot is removed. Therefore, when a serious clot is detected in the brain, doctors take a "watchful waiting" approach – administering drugs that decrease the swelling around the clot in hopes that this will be enough to make the patient improve without surgery.
For the last four years, Webster's team has been developing a steerable needle system for "transnasal" surgery: operations to remove tumors in the pituitary gland and at the skull base that traditionally involve cutting large openings in a patient's skull and/or face. Studies have shown that using an endoscope to go through the nasal cavity is less traumatic, but the procedure is so difficult that only a handful of surgeons have mastered it.
Last summer, Webster attended a conference in Italy where one of the speakers, Marc Simard, a neurosurgeon at the University of Maryland School of Medicine, ran through his wish list of useful imaginary neurosurgical devices, hoping that some engineer in the audience might one day be able to build one of them. When he described his wish to have a needle-sized robot arm to reach deep into the brain to remove clots, Webster couldn't help smiling because the steerable needle system he had been developing was perfect for the job.
Webster's design, which he calls an active cannula, consists of a series of thin, nested tubes. Each tube has a different intrinsic curvature. By precisely rotating, extending and retracting these tubes, an operator can steer the tip in different directions, allowing it to follow a curving path through the body. The single needle system required for removing brain clots was actually much simpler than the multi-needle transnasal system.
When Webster returned, he told Weaver about the potential new application. The neurosurgeon was quite supportive: "I think this can save a lot of lives. There are a tremendous number of intracerebral hemorrhages and the number is certain to increase as the population ages."
Graduate student Philip Swaney, who is working on the system, likes the fact it is closest to commercialization of all the projects in Webster's Medical and Electromechanical Design Laboratory. "I like the idea of working on something that will begin saving lives in the very near future," he said.
The brain-clot system only needs two tubes: a straight outer tube and a curved inner tube. Both are less than one twentieth of an inch in diameter. When a CT scan has determined the location of the blood clot, the surgeon determines the best point on the skull and the proper insertion angle for the probe. The angle is dialed into a fixture, called a trajectory stem, which is attached to the skull immediately above a small hole that has been drilled to enable the needle to pass into the patient's brain.
The surgeon positions the robot so it can insert the straight outer tube through the trajectory stem and into the brain. He also selects the small inner tube with the curvature that best matches the size and shape of the clot, attaches a suction pump to its external end and places it in the outer tube.
Guided by the CT scan, the robot inserts the outer tube into the brain until it reaches the outer surface of the clot. Then it extends the curved, inner tube into the clot's interior. The pump is turned on and the tube begins acting like a tiny vacuum cleaner, sucking out the material. The robot moves the tip around the interior of the clot, controlling its motion by rotating, extending and retracting the tubes. According to the feasibility studies the researchers have performed, the robot can remove up to 92 percent of simulated blood clots.
"The trickiest part of the operation comes after you have removed a substantial amount of the clot. External pressure can cause the edges of the clot to partially collapse making it difficult to keep track of the clot's boundaries," said Webster.
The goal of a future project is to add ultrasound imaging combined with a computer model of how brain tissue deforms to ensure that all of the desired clot material can be removed safely and effectively.
Other members of the research team are Jessica Burgner, formerly a postdoctoral fellow at Vanderbilt and now executive director of the Hannover University Center for Mechatronics in Germany, and Ray Lathrop, a graduate student at Vanderbilt.
INFORMATION:
The research was supported by National Science Foundation CAREER Award IIS-1054331 and Graduate Research Fellowship as well as a grant from the German Academic Exchange Service.
Visit Research News @ Vanderbilt for more research news from Vanderbilt. [Media Note: Vanderbilt has a 24/7 TV and radio studio with a dedicated fiber optic line and ISDN line. Use of the TV studio with Vanderbilt experts is free, except for reserving fiber time.]
Robot treats brain clots with steerable needles
2013-08-08
ELSE PRESS RELEASES FROM THIS DATE:
Pass the salt: Common condiment could enable new high-tech industry
2013-08-08
CORVALLIS, Ore. – Chemists at Oregon State University have identified a compound that could significantly reduce the cost and potentially enable the mass commercial production of silicon nanostructures – materials that have huge potential in everything from electronics to biomedicine and energy storage.
This extraordinary compound is called table salt.
Simple sodium chloride, most frequently found in a salt shaker, has the ability to solve a key problem in the production of silicon nanostructures, researchers just announced in Scientific Reports, a professional journal.
By ...
Chocolate may help keep brain healthy
2013-08-08
MINNEAPOLIS – Drinking two cups of hot chocolate a day may help older people keep their brains healthy and their thinking skills sharp, according to a study published in the August 7, 2013, online issue of Neurology®, the medical journal of the American Academy of Neurology.
The study involved 60 people with an average age of 73 who did not have dementia. The participants drank two cups of hot cocoa per day for 30 days and did not consume any other chocolate during the study. They were given tests of memory and thinking skills. They also had ultrasounds tests to measure ...
Dementia risk tied to blood sugar level, even with no diabetes
2013-08-08
SEATTLE -- A joint Group Health–University of Washington (UW) study in the New England Journal of Medicine has found that higher blood sugar levels are associated with higher dementia risk, even among people who do not have diabetes.
Blood sugar levels averaged over a five-year period were associated with rising risks for developing dementia, in this report about more than 2,000 Group Health patients age 65 and older in the Adult Changes in Thought (ACT) study.
For example, in people without diabetes, risk for dementia was 18 percent higher for people with an average ...
5-year olds choose to 'play nice' based on other kids' reputations
2013-08-08
Five-to-six-year olds are more likely to be kind to peers after observing them interacting with other children in positive ways, suggesting that children establish a sense of their peers' 'reputation' early in life. The results are published August 7 in the open access journal PLOS ONE by Kenji Onishi and colleagues from Osaka University, Japan.
The researchers observed kindergarteners' day-to-day behavior and found that bystanders in a playground were more likely to offer an object or help a child whom they had seen being helpful to another child. Children were more ...
Belief in precognition increases sense of control over life
2013-08-08
People given scientific evidence supporting our ability to predict the future feel a greater sense of control over their lives, according to research published August 7 in the open access journal PLOS ONE by Katharine Greenaway and colleagues from the University of Queensland, Australia.
One group of study participants read a paragraph stating that researchers had found evidence supporting the existence of precognition, while another group read a related paper that refuted these findings. Both papers were published in the same issue of a scientific journal. On a subsequent ...
Angry opponents seem bigger to tied up men
2013-08-08
A physical handicap like being tied down makes men over-estimate an opponent's size and under-estimate their own, according to research published August 7 in the open access journal PLOS ONE by Daniel Fessler and Colin Holbrook from the University of California, Los Angeles.
Participants who were tied down in a chair envisioned an angry man in a picture as being taller than when they made the same type of guess while simply sitting in the chair without being restrained. In a second test where they were asked to state their own height based on visual marks on a wall, ...
Researchers map complex motion-detection circuitry in flies
2013-08-08
Some optical illusions look like they're in motion even though the picture is static. A new map of the fly brain also suggests motion—or at least how the fly sees movement. The new research, published in the August 8 issue of Nature, takes advantage of a high-throughput approach that speeds the charting of neuronal connections involved in motion detection.
Neurons snake through the brain, each reaching out and touching many other neurons. In the human brain, 100 billion neurons make on average 1,000 connections each. That intricate network is the secret behind all the ...
New proto-mammal fossil sheds light on evolution of earliest mammals
2013-08-08
A newly discovered fossil reveals the evolutionary adaptations of a 165-million-year-old proto-mammal, providing evidence that traits such as hair and fur originated well before the rise of the first true mammals. The biological features of this ancient mammalian relative, named Megaconus mammaliaformis, are described by scientists from the University of Chicago in the Aug 8 issue of Nature.
"We finally have a glimpse of what may be the ancestral condition of all mammals, by looking at what is preserved in Megaconus. It allows us to piece together poorly understood details ...
NIH, Lacks family reach understanding to share genomic data of HeLa cells
2013-08-08
The National Institutes of Health today announced in Nature that it has reached an understanding with the family of the late Henrietta Lacks to allow biomedical researchers controlled access to the whole genome data of cells derived from her tumor, commonly known as HeLa cells. These cells have already been used extensively in scientific research and have helped make possible some of the most important medical advances of the past 60 years. These include the development of modern vaccines, cancer treatments, in vitro fertilization techniques, and many others. HeLa cells ...
Scientists identify biomarker to predict immune response risk after stem cell transplants
2013-08-08
INDIANAPOLIS -- Researchers from Indiana University, the University of Michigan, the Fred Hutchinson Cancer Research Center and the Dana-Farber Cancer Institute have identified and validated a biomarker accessible in blood tests that could be used to predict which stem cell transplant patients are at highest risk for a potentially fatal immune response called graft-versus-host disease.
Although transplant specialists have been able to reduce its impact, graft-versus-host disease remains a leading cause of death among patients who receive a stem cell transplant from another ...