(Press-News.org) The human body is full of tiny microorganisms—hundreds to thousands of species of bacteria collectively called the microbiome, which are believed to contribute to a healthy existence. The gastrointestinal (GI) tract—and the colon in particular—is home to the largest concentration and highest diversity of bacterial species. But how do these organisms persist and thrive in a system that is constantly in flux due to foods and fluids moving through it? A team led by California Institute of Technology (Caltech) biologist Sarkis Mazmanian believes it has found the answer, at least in one common group of bacteria: a set of genes that promotes stable microbial colonization of the gut.
A study describing the researchers' findings was published as an advance online publication of the journal Nature on August 18.
"By understanding how these microbes colonize, we may someday be able to devise ways to correct for abnormal changes in bacterial communities—changes that are thought to be connected to disorders like obesity, inflammatory bowel disease and autism," says Mazmanian, a professor of biology at Caltech whose work explores the link between human gut bacteria and health.
The researchers began their study by running a series of experiments to introduce a genus of microbes called Bacteriodes to sterile, or germ-free, mice. Bacteriodes, a group of bacteria that has several dozen species, was chosen because it is one of the most abundant genuses in the human microbiome, can be cultured in the lab (unlike most gut bacteria), and can be genetically modified to introduce specific mutations.
"Bacteriodes are the only genus in the microbiome that fit these three criteria," Mazmanian says.
Lead author S. Melanie Lee (PhD '13), who was an MD/PhD student in Mazmanian's lab at the time of the research, first added a few different species of the bacteria to one mouse to see if they would compete with each other to colonize the gut. They appeared to peacefully coexist. Then, Lee colonized a mouse with one particular species, Bacteroides fragilis, and inoculated the mouse with the same exact species, to see if they would co-colonize the same host. To the researchers' surprise, the newly introduced bacteria could not maintain residence in the mouse's gut, despite the fact that the animal was already populated by the identical species.
"We know that this environment can house hundreds of species, so why the competition within the same species?" Lee says. "There certainly isn't a lack of space or nutrients, but this was an extremely robust and consistent finding when we tried to essentially 'super-colonize' the mice with one species."
To explain the results, Lee and the team developed what they called the "saturable niche hypothesis." The idea is that by saturating a specific habitat, the organism will effectively exclude others of the same species from occupying that niche. It will not, however, prevent other closely related species from colonizing the gut, because they have their own particular niches. A genetic screen revealed a set of previously uncharacterized genes—a system that the researchers dubbed commensal colonization factors (CCF)—that were both required and sufficient for species-specific colonization by B. fragilis.
But what exactly is the saturable niche? The colon, after all, is filled with a flowing mass of food, fecal matter and bacteria, which doesn't offer much for organisms to grab onto and occupy.
"Melanie hypothesized that this saturable niche was part of the host tissue"—that is, of the gut itself—Mazmanian says. "When she postulated this three to four years ago, it was absolute heresy, because other researchers in the field believed that all bacteria in our intestines lived in the lumen—the center of the gut—and made zero contact with the host…our bodies. The rationale behind this thinking was if bacteria did make contact, it would cause some sort of immune response."
Nonetheless, when the researchers used advanced imaging approaches to survey colonic tissue in mice colonized with B. fragilis, they found a small population of microbes living in miniscule pockets—or crypts—in the colon. Nestled within the crypts, the bacteria are protected from the constant flow of material that passes through the GI tract. To test whether or not the CCF system regulated bacterial colonization within the crypts, the team injected mutant bacteria—without the CCF system—into the colons of sterile mice. Those bacteria were unable to colonize the crypts.
"There is something in that crypt—and we don't know what it is yet—that normal B. fragilis can use to get a foothold via the CCF system," Mazmanian explains. "Finding the crypts is a huge advance in the field because it shows that bacteria do physically contact the host. And during all of the experiments that Melanie did, homeostasis, or a steady state, was maintained. So, contrary to popular belief, there was no evidence of inflammation as a result of the bacteria contacting the host. In fact, we believe these crypts are the permanent home of Bacteroides, and perhaps other classes of microbes."
He says that by pinpointing the CCF system as a mechanism for bacterial colonization and resilience, in addition to the discovery of crypts in the colon that are species specific, the current paper has solved longstanding mysteries in the field about how microbes establish and maintain long-term colonization.
"We've studied only a handful of organisms, and though they are numerically abundant, they are clearly not representative of all the organisms in the gut," Lee says. "A lot of those other bacteria don't have CCF genes, so the question now is: Do those organisms somehow rely on interactions with Bacteroides for their own colonization, or their replication rates, or their localization?"
Suspecting that Bacteroides are keystone species—a necessary factor for building the gut ecosystem—the researchers next plan to investigate whether or not functional abnormalities, such as the inability to adhere to crypts, could affect the entire microbiome and potentially lead to a diseased state in the body.
"This research highlights the notion that we are not alone. We knew that bacteria are in our gut, but this study shows that specific microbes are very intimately associated with our bodies," Mazmanian says. "They are living in very close proximity to our tissues, and we can't ignore microbial contributions to our biology or our health. They are a part of us."
###
Funding for the research outlined in the Nature paper, titled "Bacterial colonization factors control specificity and stability of the gut microbiota," was provided by the National Institutes of Health and the Crohn's and Colitis Foundation of America. Additional coauthors were Gregory Donaldson and Silva Boyajian from Caltech and Zbigniew Mikulski and Klaus Ley from the La Jolla Institute for Allergy and Immunology in La Jolla, California.
Written by Katie Neith
A home for the microbiome
Caltech biologists identify, for the first time, a mechanism by which beneficial bacteria reside and thrive in the gastrointestinal tract
2013-08-19
ELSE PRESS RELEASES FROM THIS DATE:
Longest and largest study of insulin pumps to treat type 1 diabetes in children shows they control blood sugar more effectively and with fewer complications than injections
2013-08-19
The longest and largest study of the effectiveness of insulin pumps to treat type 1 diabetes in children has shown that the pumps are more effective at controlling blood sugar than insulin injections and cause fewer complications. The research is published in Diabetologia, the journal of the European Association for the Study of Diabetes, and is by Associate Professor Elizabeth Davis, Princess Margaret Hospital for Children, Perth, WA, Australia and colleagues.
The increasing use of insulin pump therapy over the last 15 years, particularly in children, has been driven ...
Major study links aging gene to blood cancer
2013-08-19
A gene that helps control the ageing process by acting as a cell's internal clock has been linked to cancer by a major new study.
Scientists at The Institute of Cancer Research, London, found a genetic variant that influences the ageing process among four new variants they linked to myeloma – one of the most common types of blood cancer.
The study more than doubles the number of genetic variants linked to myeloma, bringing the total number to seven, and sheds important new light on the genetic causes of the disease.
The research, published in the prestigious journal ...
Dialing back treg cell function boosts the body's cancer-fighting immune activity
2013-08-19
By carefully adjusting the function of crucial immune cells, scientists may have developed a completely new type of cancer immunotherapy—harnessing the body's immune system to attack tumors. To accomplish this, they had to thread a needle in immune function, shrinking tumors without triggering unwanted autoimmune responses.
The new research, performed in animals, is not ready for clinical use in humans. However, the approach, making use of a key protein to control immune function, lends itself to further study using candidate drugs that employ the same mechanisms.
"This ...
New MR analysis technique reveals brain tumor response to anti-angiogenesis therapy
2013-08-19
A new way of analyzing data acquired in MR imaging appears to be able to identify whether or not tumors are responding to anti-angiogenesis therapy, information that can help physicians determine the most appropriate treatments and discontinue ones that are ineffective. In their report receiving online publication in Nature Medicine, investigators from the Martinos Center for Biomedical Imaging at Massachusetts General Hospital (MGH), describe how their technique, called vessel architectural imaging (VAI), was able to identify changes in brain tumor blood vessels within ...
Marathon bombing victims aided by rapid response, imaging of injuries
2013-08-19
The Boston Marathon bombing brought international attention back to the devastating effects of terrorism. There were numerous victims with severe injuries that needed immediate attention. A novel study in Arthritis Care & Research, a journal published by Wiley on behalf of the American College of Rheumatology (ACR), presents cases from Boston-area hospitals where victims were treated, examining the medical response and imaging technologies used to save lives and limbs.
On April 15, 2013, at approximately 2:49 p.m. two pressure-cooker bombs exploded one after the other ...
Experts describe ways to eliminate wasteful medical tests and procedures
2013-08-19
Medical organizations are participating in a campaign to help clinicians and patients avoid wasteful and sometimes harmful medical interventions. Recently, experts in pediatric and adult health from diverse geographic locations of the United States and from a mix of academic and non- academic settings shared their experiences, consulted their colleagues, and analyzed numerous studies in the medical literature to determine the top recommendations for improving healthcare value. Following these recommendations, which are outlined in a new study published today in the Journal ...
Giving preschoolers choice increases sharing behavior
2013-08-19
Getting kids to share their toys is a never-ending battle, and compelling them to do so never seems to help. New research suggests that allowing children to make a choice to sacrifice their own toys in order to share with someone else makes them share more in the future. The new findings are published in Psychological Science, a journal of the Association for Psychological Science.
These experiments, conducted by psychological scientists Nadia Chernyak and Tamar Kushnir of Cornell University, suggest that sharing when given a difficult choice leads children to see themselves ...
Effects of Parkinson's-disease mutation reversed in cells
2013-08-17
UC San Francisco scientists working in the lab used a chemical found in an anti-wrinkle cream to prevent the death of nerve cells damaged by mutations that cause an inherited form of Parkinson’s disease. A similar approach might ward off cell death in the brains of people afflicted with Parkinson’s disease, the team suggested in a study reported online in the journal Cell on August 15.
The achievement marks a pharmacologic milestone as the first highly specific targeting of a member of an important class of enzymes called kinases to increase rather than to inhibit ...
Calving sand dunes, stress fields in Southern California, and Devonian black shale
2013-08-17
Boulder, Colo., USA – New Geology postings discuss a vanished link between Antarctica and Australia; the West Salton Detachment fault in California, USA; chemical interaction between peridotite and intruding melts in the Northern Apennines, Italy; calving barchan dunes; the nature of black shale in the Late Devonian Appalachian Basin; the August 2008 avulsion belt of the Kosi River, India; reef island formation; and a one-year record of eight quakes within dune deposits of the Navajo Sandstone, Utah, USA.
Highlights are provided below. GEOLOGY articles published ahead ...
Equipping a construction helmet with a sensor can detect the onset of carbon monoxide poisoning
2013-08-17
Research calling for the use of a wearable computing system installed in a helmet to protect construction workers from carbon monoxide poisoning, a serious lethal threat in this industry, has garnered the Virginia Tech investigators a Best Paper Award from a prestigious scientific and engineering community.
This award will be presented at the August 17-21, 2013 Institute of Electrical and Electronic Engineers (IEEE) Conference on Automation Science and Engineering.
Carbon monoxide poisoning is a significant problem for construction workers in both residential and industrial ...
LAST 30 PRESS RELEASES:
Diamond continues to shine: new properties discovered in diamond semiconductors
Researchers find the key to Artificial Intelligence’s learning power – an inbuilt, special kind of Occam’s razor
Genetic tweak optimizes drug-making cells by blocking buildup of toxic byproduct
University of Birmingham researchers awarded grant to tackle early-stage heart disease in chronic kidney disease
Researchers harness AI to predict cardiovascular risk from CT scans
Samsung takes top spot in U.S. patents for third year running while TSMC rises into second place; after four-year falloff, grants increase nearly 4%
HKU ecologist highlights critical gaps in global wildlife trade monitoring
Smoking may lead people to earn less
Hiroshima flooding: A case study of well usage and adaptive governance
New survey finds over half of Americans are unaware that bariatric surgery can improve fertility
World’s oldest 3D map discovered
Metabolomics-driven approaches for identifying therapeutic targets in drug discovery
Applications of ultrafast nano-spectroscopy and nano-imaging
Study links PFAS contamination of drinking water to a range of rare cancers
Scientists explain how a compound from sea sponge exerts its biological effects
Why older women are embracing the open road
Shift to less reliable ‘natural’ contraception methods among abortion patients over past 5 years
Tobacco advertising + sponsorship bans linked to 20% lower odds of smoking
Vascular ‘fingerprint’ at the back of the eye can accurately predict stroke risk
Circulation problems in the brain’s seat of memory linked to mild cognitive impairment in older adults
Oregon State receives $11.9 million from Defense Department to enhance health of armed forces
Leading cancer clinician, researcher Dr. Jenny Chang to lead Houston Methodist Academic Institute
Engineering quantum entanglement at the nanoscale
Researchers develop breakthrough one-step flame retardant for cotton textiles
New study identifies how blood vessel dysfunction can worsen chronic disease
Picking the right doctor? AI could help
Travel distance to nearest lung cancer facility differs by racial and ethnic makeup of communities
UTA’s student success strategy earns national acclaim
Wind turbines impair the access of bats to water bodies in agricultural landscapes
UCF biology researchers win awards from NOAA to support critical coastal work
[Press-News.org] A home for the microbiomeCaltech biologists identify, for the first time, a mechanism by which beneficial bacteria reside and thrive in the gastrointestinal tract