(Press-News.org) A study into marine life around an underwater volcanic vent in the Mediterranean, might hold the key to understanding how some species will be able to survive in increasingly acidic sea water should anthropogenic climate change continue.
Researchers have discovered that some species of polychaete worms are able to modify their metabolic rates to better cope with and thrive in waters high in carbon dioxide (CO2), which is otherwise poisonous to other, often closely-related species.
The study sheds new light on the robustness of some marine species and the relative resilience of marine biodiversity should atmospheric CO2 continue to cause ocean acidification.
A team of scientists led by Plymouth University, and including colleagues from the Naples Zoological Station in Ischia; the Marine Ecology Laboratory ENEA in La Spezia, Italy; the University of Texas Galveston; and the University of Hull, conducted a three-year research project into the potential mechanisms that species of worm polychaetes use to live around the underwater CO2 vent of Ischia in Southern Italy.
The researchers collected specimens found in waters characterised by either elevated or low levels of CO2, and placed them in specially-constructed 'transplantation chambers', which were then lowered into areas both within and away from the volcanic vent.
They monitored the responses of the worms and found that one of the species that had been living inside the CO2 vent was physiologically and genetically adapted to the acidic conditions, whilst another was able to survive inside the vent by adjusting its metabolism.
Project leader Dr Piero Calosi, of Plymouth University's Marine Institute, said: "Previous studies have shown that single-cell algae can genetically adapt to elevated levels of carbon dioxide, but this research has demonstrated that a marine animal can physiologically and genetically adapt to chronic and elevated levels of carbon dioxide.
"Furthermore, we show that both plasticity and adaptation are key to preventing some species' from suffering extinction in the face of on-going ocean acidification, and that these two strategies may be largely responsible to defining the fate of marine biodiversity."
The results revealed that species normally found inside the CO2 vent were better able to regulate their metabolic rate when exposed to high CO2 conditions, whilst species only found outside the CO2 vent were clearly impaired by acidic waters. In fact, their metabolism either greatly decreased, indicating reduced energy production, or greatly increased, indicating a surge in the basic cost of living, in both cases making life inside the vent unsustainable.
Dr Maria-Cristina Gambi, of the Naples Zoological Station in Ischia, explained: "Despite some species showing the ability to metabolically adapt and adjust to the extreme conditions that are found inside the CO2 vents, others appear unable to physiologically cope with such conditions.
''In this sense, our findings could help to explain mass extinctions of the past, and potential extinctions in the future, as well as shed light on the resilience of some species to on-going ocean acidification."
The team also found that those species adapted to live inside the CO2 vent showed slightly higher metabolic rates and were much smaller in size – up to 80% smaller – indicating that adaptation came at a cost of energy for growth.
Dr Calosi concluded that: ''Ultimately, species' physiological responses to high CO2, as those reported by our study, may have repercussions on their abundance and distribution, and thus on the structure and dynamics of marine communities. This in turn will impact those ecosystem functions that humans rely upon to obtain goods and services from the ocean."
The research was funded by a Natural Environment Research Council UK Ocean Acidification Research Programme grant, and an Assemble Marine EU FP7 scheme, and is the first of its kind to bring together both the physiological and genetic evidence for adaptation to elevated pCO2 in a multicellular organism.
INFORMATION:
The findings are published in the Philosophical Transactions of the Royal Society B, online at 00.01BST on the 26th of August 2013, until which the information contained in this press release is embargoed.
Notes to Editors
The full report is available upon request. For more information please contact Andrew Merrington, Senior Press Officer, on 01752 588003.
Please find attached an image of the transplantation chambers in place at one of the vents. More images are available upon request.
Details: Calosi, P., Rastrick, S.P.S., Lombardi, C., de Guzman, H.J., Davidson, L., Jahnke, M., Giangrande, A, Hardege, J.D., Schulze, A., Spicer, J.I., Gambi, M.C., 2013. Adaptation and acclimatisation to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system. Phil. Trans. Roy. Soc. London B special issue Ocean Acidification and Climate Change: Advances in Ecology and Evolution.
About Plymouth University
As one of the world's top modern universities and awarded a Queen's Anniversary Prize for Higher and Further Education in 2012, Plymouth has a strong record of excellence, enterprise and innovation across its teaching and research activities. Distinguished by its long-term engagement with business and the community, the University enjoys outstanding links with employers and plays a key role in civic and regional leadership. It is the only university in the world to have been awarded the Social Enterprise Mark in recognition of its work in support of the sector.
With around 30,000 students, including those studying higher education at its partner colleges throughout the South West, the University is one of largest in the UK. It enjoys a high rate of graduate employment and has recently invested more than £150 million in its estate and facilities to enhance the student experience and support world-class research.
Plymouth has embedded sustainability across its operations, and is the overall best performing university in the People & Planet Green League. It is the first modern university to found a medical and dental school – the Plymouth University Peninsula Schools of Medicine and Dentistry – and is the leading provider of Higher Education in Cornwall.
Insight into marine life's ability to adapt to climate change
2013-08-26
ELSE PRESS RELEASES FROM THIS DATE:
Researchers uncover new biological target for combating Parkinson's disease
2013-08-26
Researchers at Johns Hopkins and elsewhere have brought new clarity to the picture of what goes awry in the brain during Parkinson's disease and identified a compound that eases the disease's symptoms in mice. Their discoveries, described in a paper published online in Nature Neuroscience on August 25, also overturn established ideas about the role of a protein considered key to the disease's progress.
"Not only were we able to identify the mechanism that could cause progressive cell death in both inherited and non-inherited forms of Parkinson's, we found there were already ...
Scientists pinpoint 105 additional genetic errors that cause cystic fibrosis
2013-08-26
Of the over 1,900 errors already reported in the gene responsible for cystic fibrosis (CF), it is unclear how many of them actually contribute to the inherited disease. Now a team of researchers reports significant headway in figuring out which mutations are benign and which are deleterious. In so doing, they have increased the number of known CF-causing mutations from 22 to 127, accounting for 95 percent of the variations found in patients with CF.
In a summary of their research to be published online in Nature Genetics Aug. 25, the scientists say that characterizing ...
Cocaine's effect on mice may explain drug-seeking behavior
2013-08-26
Cocaine can speedily rewire high-level brain circuits that support learning, memory and decision-making, according to new research from the University of California, Berkeley, and UCSF. The findings shed new light on the frontal brain's role in drug-seeking behavior and may be key to tackling addiction.
Looking into the frontal lobes of live mice at a cellular level, researchers found that, after just one dose of cocaine, the rodents showed fast and robust growth of dendritic spines, which are tiny, twig-like structures that connect neurons and form the nodes of the brain's ...
Mercury levels in Pacific fish likely to rise in coming decades
2013-08-26
ANN ARBOR — University of Michigan researchers and their University of Hawaii colleagues say they've solved the longstanding mystery of how mercury gets into open-ocean fish, and their findings suggest that levels of the toxin in Pacific Ocean fish will likely rise in coming decades.
Using isotopic measurement techniques developed at U-M, the researchers determined that up to 80 percent of the toxic form of mercury, called methylmercury, found in the tissues of deep-feeding North Pacific Ocean fish is produced deep in the ocean, most likely by bacteria clinging to sinking ...
Leicester researchers discover a potential molecular defence against Huntington's disease
2013-08-26
Leicester geneticists have discovered a potential defence against Huntington's disease – a fatal neurodegenerative disorder which currently has no cure.
The team of University of Leicester researchers identified that glutathione peroxidase activity – a key antioxidant in cells – protects against symptoms of the disease in model organisms.
They hope that the enzyme activity – whose protective ability was initially observed in model organisms such as yeast - can be further developed and eventually used to treat people with the genetically-inherited disease.
The disease ...
Gallo Center study in mice links cocaine use to new brain structures
2013-08-26
Mice given cocaine showed rapid growth in new brain structures associated with learning and memory, according to a research team from the Ernest Gallo Clinic and Research Center at UC San Francisco. The findings suggest a way in which drug use may lead to drug-seeking behavior that fosters continued drug use, according to the scientists.
The researchers used a microscope that allowed them to peer directly into nerve cells within the brains of living mice, and within two hours of giving a drug they found significant increases in the density of dendritic spines – structures ...
Ocean fish acquire more mercury at depth
2013-08-26
Mercury—a common industrial toxin—is carried through the atmosphere before settling on the ocean and entering the marine food web.
Now, exciting new research from the University of Michigan and the University of Hawai'i at Manoa School of Ocean and Earth Science and Technology (SOEST) combines biogeochemistry and direct marine ecology observations to show how the global mercury cycle is colliding with ocean fish—and the human seafood supply—at different depths in the water.
Mercury accumulation in the ocean fish we eat tends to take place at deeper depths, scientists ...
Study finds rattling ions limit heat flow in materials used to reduce carbon emissions
2013-08-26
A new study published today in the journal Nature Materials has found a way to suppress the thermal conductivity in sodium cobaltate so that it can be used to harvest waste energy.
Led by scientists at Royal Holloway University, the team conducted a series of experiments on crystals of sodium cobaltate grown in the University's Department of Physics. X-ray and neutron scattering experiments were carried out at the European Synchrotron Radiation Facility and in the Institut Laue-Langevin in Grenoble, using the UK's national supercomputer facility HECToR to make their ...
Scientists analyze the extent of ocean acidification
2013-08-26
Bremerhaven, 22 August 2013. Ocean acidification could change the ecosystems of our seas even by the end of this century. Biologists at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), have therefore assessed the extent of this ominous change for the first time. In a new study they compiled and analysed all available data on the reaction of marine animals to ocean acidification. The scientists found that whilst the majority of animal species investigated are affected by ocean acidification, the respective impacts are very specific. The ...
Researchers discover how inhibitory neurons behave during critical periods of learning
2013-08-26
PITTSBURGH—We've all heard the saying "you can't teach an old dog new tricks." Now neuroscientists are beginning to explain the science behind the adage.
For years, neuroscientists have struggled to understand how the microcircuitry of the brain makes learning easier for the young, and more difficult for the old. New findings published in the journal Nature by Carnegie Mellon University, the University of California, Los Angeles and the University of California, Irvine show how one component of the brain's circuitry — inhibitory neurons — behave during critical periods ...