(Press-News.org) Understanding what happens to a material as it undergoes phase transformations – changes from a solid to a liquid to a gas or a plasma – is of fundamental scientific interest and critical for optimizing commercial applications. For metal nanocrystals, assumptions about the size-dependence of phase transformations were made that now need to be re-evaluated. A team of researchers at the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) has demonstrated that as metal nanocrystals go through phase transformations, size can make a much bigger difference than previously believed.
Working at Berkeley Lab's Molecular Foundry, a DOE Nanoscale Science Research Center, the team led by Jeffrey Urban and Stephen Whitelam developed a unique optical probe based on luminescence that provided the first direct observations of metal nanocrystals undergoing phase transformations during reactions with hydrogen gas. Analysis of their observations revealed a surprising degree of size-dependence when it comes to such critical properties as thermodynamics and kinetics. These results hold important implications for the future design of hydrogen storage systems, catalysts, fuel cells and batteries.
"No one has ever directly observed phase transformations in metal nanocrystal systems before so no one saw the size dependence factor, which was obscured by other complicating effects, hidden in plain sight if you will," Urban says. "The assumption had been that for nanocrystals beyond 15 nanometers, the thermodynamic and kinetic behavior would be essentially bulk-like. However, our results show that pure size effects can be understood and productively employed over a much broader range of nanocrystal sizes than previously thought."
Urban and Whitelam, both of whom hold appointments with Berkeley Lab's Materials Sciences Division, are the corresponding authors of a paper describing this study in the journal Nature Materials. The paper is titled "Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals." Co-authors are Rizia Bardhan, Lester Hedges, Cary Pint and Ali Javey.
While it is well established that materials on the nanoscale can offer physical, chemical and mechanical properties not displayed at the microscale, knowledge as to how these properties can be altered as nanocrystals undergo phase transformations has been lacking.
"Quantitative understanding of nanocrystal phase transformations has been hindered by difficulties in directly monitoring well-characterized nanoscale systems in reactive environments," Urban says.
Urban and his colleagues addressed this problem with a custom-built stainless steel gas-tight cell with optical windows and heating elements and connected to a high vacuum pump. They used this experimental setup to collect in situ luminescence spectra with a confocal Raman microscope as palladium nanocubes interacted with hydrogen gas. The nanocubes were synthesized by wet-chemistry and were all clear-faceted single-crystalline objects with a narrow range in size distribution.
"Our experimental setup allowed for rapid, direct monitoring of minuscule alterations in luminescence during hydrogen sorption," Urban says. "This allowed us to uncover the size-dependence of the intrinsic thermodynamics and kinetics of hydriding and dehydriding phase transformations. We observed a dramatic decrease in luminescence as the palladium nanocubes formed hydrides. This lost luminescence was regained during dehydriding."
A statistical mechanical model whose development was led by Whitelam and co-author Hedges was then used to quantify the observational data for palladium nanocubes of all sizes. Because of the narrow size distribution of the nanocubes, Whitelam, Urban and their colleagues were able to show a direct correlation between luminescence and phase transitions that can be applied to other metal nanocrystal systems as well.
"Simple geometric arguments tell us that under certain conditions, thermally driven solid-state phase transformations are governed by nanocrystal dimensions," Whitelam says. "These arguments further suggest ways of optimizing hydrogen storage kinetics in a variety of metal nanocrystal systems."
The next step in this research will be to examine the effects of dopants on phase transformations in metal nanosystems.
"Our luminescence-probe and statistical mechanical model are a versatile combination," Urban says, "that allow us to look at a number of gas-nanocrystal interactions in which controlling the thermodynamics of the interactions is paramount."
INFORMATION:
This research was supported by DOE's Office of Science through the Molecular Foundry and through the Center for Nanoscale Control of Geologic Carbon Dioxide, a DOE Energy Frontier Research Center. Additional support was provided by DOE's Office of Energy Efficiency and Renewable Energy and by Mohr Davidow Ventures, a venture capital firm.
Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.
The Molecular Foundry is one of five DOE Nanoscale Science Research Centers (NSRCs), national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit http://science.energy.gov.
The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov.
Size matters as nanocrystals go through phases
Berkeley Lab researchers at the molecular foundry reveal fundamental size-dependence of metal nanocrystals undergoing phase transitions
2013-08-26
ELSE PRESS RELEASES FROM THIS DATE:
Carbon-sequestering ocean plants may cope with climate changes over the long run
2013-08-26
SAN FRANCISCO -- A year-long experiment on tiny ocean organisms called coccolithophores suggests that the single-celled algae may still be able to grow their calcified shells even as oceans grow warmer and more acidic in Earth's near future.
The study stands in contrast to earlier studies suggesting that coccolithophores would fail to build strong shells in acidic waters. The world's oceans are expected to become more acidic as human activities pump increasing amounts of carbon dioxide into the Earth's atmosphere.
But after the researchers raised one strain of the ...
Insight into marine life's ability to adapt to climate change
2013-08-26
A study into marine life around an underwater volcanic vent in the Mediterranean, might hold the key to understanding how some species will be able to survive in increasingly acidic sea water should anthropogenic climate change continue.
Researchers have discovered that some species of polychaete worms are able to modify their metabolic rates to better cope with and thrive in waters high in carbon dioxide (CO2), which is otherwise poisonous to other, often closely-related species.
The study sheds new light on the robustness of some marine species and the relative resilience ...
Researchers uncover new biological target for combating Parkinson's disease
2013-08-26
Researchers at Johns Hopkins and elsewhere have brought new clarity to the picture of what goes awry in the brain during Parkinson's disease and identified a compound that eases the disease's symptoms in mice. Their discoveries, described in a paper published online in Nature Neuroscience on August 25, also overturn established ideas about the role of a protein considered key to the disease's progress.
"Not only were we able to identify the mechanism that could cause progressive cell death in both inherited and non-inherited forms of Parkinson's, we found there were already ...
Scientists pinpoint 105 additional genetic errors that cause cystic fibrosis
2013-08-26
Of the over 1,900 errors already reported in the gene responsible for cystic fibrosis (CF), it is unclear how many of them actually contribute to the inherited disease. Now a team of researchers reports significant headway in figuring out which mutations are benign and which are deleterious. In so doing, they have increased the number of known CF-causing mutations from 22 to 127, accounting for 95 percent of the variations found in patients with CF.
In a summary of their research to be published online in Nature Genetics Aug. 25, the scientists say that characterizing ...
Cocaine's effect on mice may explain drug-seeking behavior
2013-08-26
Cocaine can speedily rewire high-level brain circuits that support learning, memory and decision-making, according to new research from the University of California, Berkeley, and UCSF. The findings shed new light on the frontal brain's role in drug-seeking behavior and may be key to tackling addiction.
Looking into the frontal lobes of live mice at a cellular level, researchers found that, after just one dose of cocaine, the rodents showed fast and robust growth of dendritic spines, which are tiny, twig-like structures that connect neurons and form the nodes of the brain's ...
Mercury levels in Pacific fish likely to rise in coming decades
2013-08-26
ANN ARBOR — University of Michigan researchers and their University of Hawaii colleagues say they've solved the longstanding mystery of how mercury gets into open-ocean fish, and their findings suggest that levels of the toxin in Pacific Ocean fish will likely rise in coming decades.
Using isotopic measurement techniques developed at U-M, the researchers determined that up to 80 percent of the toxic form of mercury, called methylmercury, found in the tissues of deep-feeding North Pacific Ocean fish is produced deep in the ocean, most likely by bacteria clinging to sinking ...
Leicester researchers discover a potential molecular defence against Huntington's disease
2013-08-26
Leicester geneticists have discovered a potential defence against Huntington's disease – a fatal neurodegenerative disorder which currently has no cure.
The team of University of Leicester researchers identified that glutathione peroxidase activity – a key antioxidant in cells – protects against symptoms of the disease in model organisms.
They hope that the enzyme activity – whose protective ability was initially observed in model organisms such as yeast - can be further developed and eventually used to treat people with the genetically-inherited disease.
The disease ...
Gallo Center study in mice links cocaine use to new brain structures
2013-08-26
Mice given cocaine showed rapid growth in new brain structures associated with learning and memory, according to a research team from the Ernest Gallo Clinic and Research Center at UC San Francisco. The findings suggest a way in which drug use may lead to drug-seeking behavior that fosters continued drug use, according to the scientists.
The researchers used a microscope that allowed them to peer directly into nerve cells within the brains of living mice, and within two hours of giving a drug they found significant increases in the density of dendritic spines – structures ...
Ocean fish acquire more mercury at depth
2013-08-26
Mercury—a common industrial toxin—is carried through the atmosphere before settling on the ocean and entering the marine food web.
Now, exciting new research from the University of Michigan and the University of Hawai'i at Manoa School of Ocean and Earth Science and Technology (SOEST) combines biogeochemistry and direct marine ecology observations to show how the global mercury cycle is colliding with ocean fish—and the human seafood supply—at different depths in the water.
Mercury accumulation in the ocean fish we eat tends to take place at deeper depths, scientists ...
Study finds rattling ions limit heat flow in materials used to reduce carbon emissions
2013-08-26
A new study published today in the journal Nature Materials has found a way to suppress the thermal conductivity in sodium cobaltate so that it can be used to harvest waste energy.
Led by scientists at Royal Holloway University, the team conducted a series of experiments on crystals of sodium cobaltate grown in the University's Department of Physics. X-ray and neutron scattering experiments were carried out at the European Synchrotron Radiation Facility and in the Institut Laue-Langevin in Grenoble, using the UK's national supercomputer facility HECToR to make their ...
LAST 30 PRESS RELEASES:
Reality check: making indoor smartphone-based augmented reality work
Overthinking what you said? It’s your ‘lizard brain’ talking to newer, advanced parts of your brain
Black men — including transit workers — are targets for aggression on public transportation, study shows
Troubling spike in severe pregnancy-related complications for all ages in Illinois
Alcohol use identified by UTHealth Houston researchers as most common predictor of escalated cannabis vaping among youths in Texas
Need a landing pad for helicopter parenting? Frame tasks as learning
New MUSC Hollings Cancer Center research shows how Golgi stress affects T-cells' tumor-fighting ability
#16to365: New resources for year-round activism to end gender-based violence and strengthen bodily autonomy for all
Earliest fish-trapping facility in Central America discovered in Maya lowlands
São Paulo to host School on Disordered Systems
New insights into sleep uncover key mechanisms related to cognitive function
USC announces strategic collaboration with Autobahn Labs to accelerate drug discovery
Detroit health professionals urge the community to act and address the dangers of antimicrobial resistance
3D-printing advance mitigates three defects simultaneously for failure-free metal parts
Ancient hot water on Mars points to habitable past: Curtin study
In Patagonia, more snow could protect glaciers from melt — but only if we curb greenhouse gas emissions soon
Simplicity is key to understanding and achieving goals
Caste differentiation in ants
Nutrition that aligns with guidelines during pregnancy may be associated with better infant growth outcomes, NIH study finds
New technology points to unexpected uses for snoRNA
Racial and ethnic variation in survival in early-onset colorectal cancer
Disparities by race and urbanicity in online health care facility reviews
Exploring factors affecting workers' acquisition of exercise habits using machine learning approaches
Nano-patterned copper oxide sensor for ultra-low hydrogen detection
Maintaining bridge safer; Digital sensing-based monitoring system
A novel approach for the composition design of high-entropy fluorite oxides with low thermal conductivity
A groundbreaking new approach to treating chronic abdominal pain
ECOG-ACRIN appoints seven researchers to scientific committee leadership positions
New model of neuronal circuit provides insight on eye movement
Cooking up a breakthrough: Penn engineers refine lipid nanoparticles for better mRNA therapies
[Press-News.org] Size matters as nanocrystals go through phasesBerkeley Lab researchers at the molecular foundry reveal fundamental size-dependence of metal nanocrystals undergoing phase transitions