PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Study discovers gene that causes devastating mitochondrial diseases

2013-08-29
(Press-News.org) MAYWOOD, Il. – Researchers have identified a novel disease gene in which mutations cause rare but devastating genetic diseases known as mitochondrial disorders.

Nine rare, disease-causing mutations of the gene, FBXL4, were found in nine affected children in seven families, including three siblings from the same family. An international team of researchers report the discovery in the American Journal of Human Genetics.

The lead author is Xiaowu Gai, PhD, director of the Center for Biomedical Informatics at Loyola University Chicago Stritch School of Medicine.

Mitochondrial diseases are caused by defects in mitochondria, the cell's energy plants. Malfunctions in mitochondria lead to multi-systemic defects in the brain, heart, muscles, kidney and endocrine and respiratory systems. The many possible clinical symptoms include loss of motor control, muscle weakness, heart disease, diabetes, respiratory problems, seizures, vision and hearing problems, diabetes and developmental delays.

Mitochondrial diseases are caused by mutations in either mitochondrial DNA or in genes in the nucleus that encode for proteins that function in the mitochondria. Mitochondrial DNA is inherited from the mother. Thus, a child can inherit a mitochondrial disease either from the mother alone or from both parents carrying mutations in the same nuclear gene. Mitochondrial diseases affect between 1 in 4,000 and 1 in 5,000 people.

FBXL4 is a nuclear gene that encodes for a protein called F-Box and Leucine-Rich Repeat Protein 4. The study found that mutations of this gene lead to either truncated or altered forms of the protein. This results in cells having less mitochondrial DNA, decreased mitochondrial membrane potential and a faulty process in cell metabolism called oxidative phosphorylation. The study also proved that the FBXL4 protein is located exclusively in mitochondria, which was previously unrecognized. While mutations in more than 100 genes have been linked to mitochondrial diseases, the new discovery adds another novel disease gene to the list. Consequently, genetic testing will enable more parents to discover the cause of their childrens' mitochondrial diseases. "This knowledge will help give them the peace of mind that it was not something they did to cause the disease," Gai said. More importantly, the discovery also will improve scientists' understanding of mitochondrial diseases, and potentially lead to new drugs to treat the disorders, Gai said.

The discovery began with an 8-year-old girl who had a mitochondrial disease known as Leigh syndrome. She has been seen by Dr. Marni J. Falk of the Children's Hospital of Philadelphia, who is a co-senior author of the study. A battery of genetic tests of the girl and her parents over the years all had failed to find any of the gene mutations previously known to cause mitochondrial diseases.

Gai and Falk used the high-performance computer cluster at Loyola's Center for Biomedical Informatics to analyze billions of DNA sequences to identify the gene mutation in the child and her parents. The research team then reached out to other collaborators to see if any of their patients also had the FBXL4 mutation. Eight additional affected children in six unrelated families were found to also have disease-causing mutations in this gene.

The discovery is an example of how Loyola's Center for Biomedical Informatics is using computational approaches to address basic biomedical questions. Isolating an unknown mutation can involve sequencing and analyzing a patient's entire genome, containing 6 billion base pairs (DNA letters). Powerful computational approaches and infrastructure are required to read and compare sequences of billions of DNA base pairs.

### The study included collaborators from multiple research centers in the United States, Europe and the Middle East. In addition to Gai, the research team included co-first authors Daniele Ghezzi, Mark A. Johnson, Caroline A. Biagosch, Hanan E. Shamseldin and Tobias B. Haack and co-senior authors Peter Freisinger, Wolfgang Sperl, Holger Prokisch, Fowzan S. Alkuraya, Marni J. Falk and Massimo Zeviani.


ELSE PRESS RELEASES FROM THIS DATE:

Single gene change increases mouse lifespan by 20 percent

2013-08-29
By lowering the expression of a single gene, researchers at the National Institutes of Health have extended the average lifespan of a group of mice by about 20 percent -- the equivalent of raising the average human lifespan by 16 years, from 79 to 95. The research team targeted a gene called mTOR, which is involved in metabolism and energy balance, and may be connected with the increased lifespan associated with caloric restriction. A detailed study of these mice revealed that gene-influenced lifespan extension did not affect every tissue and organ the same way. For example, ...

Neuroscientists find a key to reducing forgetting -- it's about the network

2013-08-29
A team of neuroscientists has found a key to the reduction of forgetting. Their findings, which appear in the journal Neuron, show that the better the coordination between two regions of the brain, the less likely we are to forget newly obtained information. The study was conducted at New York University by Lila Davachi, an associate professor in NYU's Department of Psychology and Center for Neural Science, and Kaia Vilberg, now a postdoctoral researcher at the University of Texas' Center for Vital Longevity and School of Behavioral and Brain Sciences in Dallas. "When ...

Study reveals why the body clock is slow to adjust to time changes

2013-08-29
New research in mice reveals why the body is so slow to recover from jet-lag and identifies a target for the development of drugs that could help us to adjust faster to changes in time zone. With funding from the Wellcome Trust and F. Hoffmann La Roche, researchers at the University of Oxford and F. Hoffmann La Roche have identified a mechanism that limits the ability of the body clock to adjust to changes in patterns of light and dark. And the team show that if you block the activity of this gene in mice, they recover faster from disturbances in their daily light/dark ...

Feinstein Institute researchers track Huntington's disease progression using PET scans

2013-08-29
MANHASSET, NY – Investigators at The Feinstein Institute for Medical Research have discovered a new way to measure the progression of Huntington's disease, using positron emission tomography (PET) to scan the brains of carriers of the gene. The findings are published in the September issue of The Journal of Clinical Investigation. Huntington's disease causes the progressive breakdown of nerve cells in the brain, which leads to impairments in movement, thinking and emotions. Most people with Huntington's disease develop signs and symptoms in their 40s or 50s, but the onset ...

Bad to the bone: some breast cancer cells are primed to thrive

2013-08-29
When a cancer cell sloughs off the edge of a tumor in the breast, it faces a tough road to survive. The cell must not only remain physically intact as it rushes through blood vessels, but it also must find a new organ to lodge itself in, take in enough nutrients and oxygen to stay alive, and begin dividing, all while escaping notice by the body's immune system. A team of Howard Hughes Medical Institute (HHMI) scientists has discovered that some loose breast cancer cells, have a leg up on survival—the genes they express make them more likely to prosper in bone tissue. ...

Scientists map molecular mechanism that may cause toxic protein buildup in dementing disorders

2013-08-29
SAN FRANCISCO, CA—August 29, 2013—There is no easy way to study diseases of the brain. Extracting brain cells, or neurons, from a living patient is difficult and risky, while examining a patient's brain post-mortem usually only reveals the disease's final stages. And animal models, while incredibly informative, have frequently fallen short during the crucial drug-development stage of research. But scientists at the Gladstone Institutes and the University of California, San Francisco (UCSF) have taken a potentially more powerful approach: an advanced stem-cell technique ...

CRISPR/Cas genome engineering system generates valuable conditional mouse models

2013-08-29
CAMBRIDGE, Mass. (August 29, 2013) – Whitehead Institute researchers have used the gene regulation system CRISPR/Cas to engineer mouse genomes containing reporter and conditional alleles in one step. Animals containing such sophisticated engineered alleles can now be made in a matter of weeks rather than years and could be used to model diseases and study gene function. "We've used CRISPR/Cas to mutate genes before, but the nature of the targeted mutations has been unpredictable," says Whitehead Founding Member Rudolf Jaenisch. "Now we can make specific deletions defined ...

Pre-pregnancy hormone testing may indicate gestational diabetes risk

2013-08-29
OAKLAND, Calif., August 29, 2013 — Overweight women with low levels of the hormone adiponectin prior to pregnancy are nearly seven times more likely to develop gestational diabetes, according to a Kaiser Permanente study published today in the journal Diabetes Care. Adiponectin protects against insulin resistance, inflammation and heart disease. Using Kaiser Permanente HealthConnect®, an electronic health records system, the researchers retrospectively identified about 4,000 women who gave voluntary blood samples between 1985 and 1996 during routine care and subsequently ...

Digesting milk in Ethiopia: A case of multiple genetic adaptations

2013-08-29
A genetic phenomenon that allows for the selection of multiple genetic mutations that all lead to a similar outcome -- for instance the ability to digest milk -- has been characterised for the first time in humans. The phenomenon, known as a 'soft selective sweep', was described in the population of Ethiopia and reveals that individuals from the Eastern African population have adapted to be able to digest milk, but via different mutations in their genetic material. A team of geneticists from UCL, University of Addis Ababa and Roskilde University have shown that five ...

Human heart disease recently found in chimpanzees

2013-08-29
Los Angeles -- While in the past century there have been several documented examples of young, healthy athletes who have died suddenly of heart disease during competitive sporting events, a new study finds that this problem also extends to chimpanzees. According to an article published today in the SAGE journal Veterinary Pathology, Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), a human heart disease that causes sudden cardiac death in teenagers and young adults (particularly healthy athletes), has now been identified in chimpanzees. "It is the first description ...

LAST 30 PRESS RELEASES:

New perspective highlights urgent need for US physician strike regulations

An eye-opening year of extreme weather and climate

Scientists engineer substrates hostile to bacteria but friendly to cells

New tablet shows promise for the control and elimination of intestinal worms

Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston

Depression – discovering faster which treatment will work best for which individual

Breakthrough study reveals unexpected cause of winter ozone pollution

nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory

Generative AI: Uncovering its environmental and social costs

Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure

Dangerous bacterial biofilms have a natural enemy

Food study launched examining bone health of women 60 years and older

CDC awards $1.25M to engineers retooling mine production and safety

Using AI to uncover hospital patients’ long COVID care needs

$1.9M NIH grant will allow researchers to explore how copper kills bacteria

New fossil discovery sheds light on the early evolution of animal nervous systems

A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior

Study shows how plant roots access deeper soils in search of water

Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs

‘What is that?’ UCalgary scientists explain white patch that appears near northern lights

How many children use Tik Tok against the rules? Most, study finds

Scientists find out why aphasia patients lose the ability to talk about the past and future

Tickling the nerves: Why crime content is popular

Intelligent fight: AI enhances cervical cancer detection

Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion

Patient-reported influence of sociopolitical issues on post-Dobbs vasectomy decisions

Radon exposure and gestational diabetes

EMBARGOED UNTIL 1600 GMT, FRIDAY 10 JANUARY 2025: Northumbria space physicist honoured by Royal Astronomical Society

Medicare rules may reduce prescription steering

Red light linked to lowered risk of blood clots

[Press-News.org] Study discovers gene that causes devastating mitochondrial diseases