(Press-News.org) A team of University of Texas at Arlington biologists working with the U.S. Geological Survey has found that watershed wetlands can serve as a natural source for the improvement of streams polluted by acid rain.
The group, led by associate professor of biology Sophia Passy, also contends that recent increases in the level of organic matter in surface waters in regions of North America and Europe – also known as "brownification" – holds benefits for aquatic ecosystems.
The research team's work appeared in the September issue of the journal Global Change Biology.
The team analyzed water samples collected in the Adirondack Park, a six million acre region in northeastern New York. The Adirondacks have been adversely affected by atmospheric acid deposition with subsequent acidification of streams, lakes and soils. Acidification occurs when environments become contaminated with inorganic acids, such as sulfuric and nitric acid, from industrial pollution of the atmosphere.
Inorganic acids from the rain filter through poorly buffered watersheds, releasing toxic aluminum from the soil into the waterways. The overall result is loss of biological diversity, including algae, invertebrates, fish, and amphibians.
"Ecologists and government officials have been looking for ways to reduce acidification and aluminum contamination of surface waters for 40 years. While Clean Air Act regulations have fueled progress, the problem is still not solved," Passy said. "We hope that future restoration efforts in acid streams will consider the use of wetlands as a natural source of stream health improvement."
Working during key times of the year for acid deposition, the team collected 637 samples from 192 streams from the Black and Oswegatchie River basins in the Adirondacks. Their results compared biodiversity of diatoms, or algae, with levels of organic and inorganic acids. They found that streams connected to wetlands had higher organic content, which led to lower levels of toxic inorganic aluminum and decreased presence of harmful inorganic acids.
Passy joined the UT Arlington College of Science in 2001. Katrina L. Pound, a doctoral student working in the Passy lab, is the lead author on the study. The other co-author is Gregory B. Lawrence, of the USGS's New York Water Science Center.
The study authors believe that as streams acidified by acidic deposition pass through wetlands, they become enriched with organic matter, which binds harmful aluminum and limits its negative effects on stream producers. Organic matter also stimulates microbes that process sulfate and nitrate and thus decreases the inorganic acid content.
These helpful organic materials are also present in brownification – a process that some believe is tied to climate change. The newly published paper said that this process might help the recovery of biological communities from industrial acidification.
Many have viewed brownification as a negative environmental development because it is perceived as decreasing water quality for human consumption.
"What we're saying is that it's not entirely a bad thing from the perspective of ecosystem health," Pound said.
The UTA team behind the paper hopes that watershed development, including wetland construction or stream re-channeling to existing wetlands, may become a viable alternative to liming. Liming is now widely used to reduce acidity in streams affected by acid rain but many scientists question its long-term effectiveness.
INFORMATION:
The new paper is available online here: http://onlinelibrary.wiley.com/doi/10.1111/gcb.12265/abstract.
Funding for Passy's work was provided in part by the New York State Energy Research and Development Authority. The Norman Hackerman Advanced Research Program, a project of the Texas Higher Education Coordinating Board, as well as the US Geological Survey, the Adirondack Lakes Survey Corporation and the New York State Department of Environmental Conservation also provided support.
The University of Texas at Arlington is a comprehensive research institution of more than 33,000 students and more than 2,200 faculty members in the heart of North Texas. Visit http://www.uta.edu to learn more.
Wetlands could be key in revitalizing acid streams, UT Arlington researchers say
2013-09-05
ELSE PRESS RELEASES FROM THIS DATE:
UN: Rising reuse of wastewater in forecast but world lacks data on 'massive potential resource'
2013-09-05
Amid growing competition for freshwater from industry and cities, coupled with a rising world shortage of potash, nitrogen and phosphorus, an international study predicts a rapid increase in the use of treated wastewater for farming and other purposes worldwide.
However, research shows that treated wastewater -- comparable in North America alone to the volume of water flowing over Niagara Falls -- is mostly unused and, in many nations, not even quantified.
Of 181 countries studied, only 55 have information on three key aspects of wastewater: generation, treatment, ...
Dishonest deeds lead to 'cheater's high,' as long as no one gets hurt, study finds
2013-09-05
WASHINGTON – People who get away with cheating when they believe no one is hurt by their dishonesty are more likely to feel upbeat than remorseful afterward, according to new research published by the American Psychological Association.
Although people predict they will feel bad after cheating or being dishonest, many of them don't, reports a study published online in APA's Journal of Personality and Social Psychology.
"When people do something wrong specifically to harm someone else, such as apply an electrical shock, the consistent reaction in previous research has ...
Stress-related protein speeds progression of Alzheimer's disease
2013-09-04
Tampa, FL (Sept. 3, 2013) -- A stress-related protein genetically linked to depression, anxiety and other psychiatric disorders contributes to the acceleration of Alzheimer's disease, a new study led by researchers at the University of South Florida has found.
The study is published online today in the Journal of Clinical Investigation.
When the stress-related protein FKBP51 partners with another protein known as Hsp90, this formidable chaperone protein complex prevents the clearance from the brain of the toxic tau protein associated with Alzheimer's disease.
Under ...
Discovery helps to unlock brain's speech-learning mechanism
2013-09-04
USC scientists have discovered a population of neurons in the brains of juvenile songbirds that are necessary for allowing the birds to recognize the vocal sounds they are learning to imitate.
These neurons encode a memory of learned vocal sounds and form a crucial (and hitherto only theorized) part of the neural system that allows songbirds to hear, imitate, and learn its species' songs – just as human infants acquire speech sounds.
This discovery will allow scientists to uncover the exact neural mechanisms that allow songbirds to hear their own self-produced ...
Outside mentoring support for science faculty at minority-serving institutions pays off
2013-09-04
BETHESDA, MD—SEPTEMBER 4, 2013—A matched-peer controlled study of science faculty at minority-serving institutions (MSI) shows that an outside mentoring support program increased the number of peer-reviewed research publications, the number of federal grants, and the variety of professional and curricular activities of those who participated versus academic peers who did not.
The study, published today in the journal, CBE-Life Sciences Education, looked at outcomes from the Visiting Professorship (VP) Program, organized by the Minorities Affairs Committee (MAC) of the ...
Alzheimer's missing link found
2013-09-04
Yale School of Medicine researchers have discovered a protein that is the missing link in the complicated chain of events that lead to Alzheimer's disease, they report in the Sept. 4 issue of the journal Neuron. Researchers also found that blocking the protein with an existing drug can restore memory in mice with brain damage that mimics the disease.
"What is very exciting is that of all the links in this molecular chain, this is the protein that may be most easily targeted by drugs," said Stephen Strittmatter, the Vincent Coates Professor of Neurology and senior author ...
Extremely rare mitochondrial DNA deletions associated with aging can be accurately detected with Droplet Digital PCR
2013-09-04
Seattle, Wash. – September 4, 2013 – A study published today in Aging Cell identifies a new tool to accurately analyze extremely rare mitochondrial DNA (mtDNA) deletions associated with a range of diseases and disorders as well as aging. This approach, which relies on Droplet Digital PCR (ddPCR™) technology, will help researchers explore mtDNA deletions as potential disease biomarkers.
The accumulation of mtDNA mutations is associated with aging, neuromuscular disorders, and cancer. However, methods to probe the underlying mechanisms behind this mutagenesis have been ...
Faulty internal recycling by brain's trash collectors may contribute to Alzheimer's
2013-09-04
STANFORD, Calif. — A defective trash-disposal system in the brain's resident immune cells may be a major contributor to neurodegenerative disease, a scientific team from the Stanford University School of Medicine has found.
Preliminary observations show that this defect appears in the brains of patients who died of Alzheimer's disease, so correcting it may someday prove to be an effective way of preventing or slowing the course of the disease.
"We were fortunate in being able to compare microglia — the brain's own immune cells — from five patients who died of Alzheimer's ...
Bizarre alignment of planetary nebulae
2013-09-04
Astronomers have used the NASA/ESA Hubble Space Telescope and ESO's New Technology Telescope to explore more than 100 planetary nebulae in the central bulge of our galaxy. They have found that butterfly-shaped members of this cosmic family tend to be mysteriously aligned — a surprising result given their different histories and varied properties.
The final stages of life for a star like our Sun result in the star puffing its outer layers out into the surrounding space, forming objects known as planetary nebulae in a wide range of beautiful and striking shapes. One type ...
University research team's new approach enhances quantum-based secure communication
2013-09-04
University of Calgary scientists have overcome an 'Achilles' heel' of quantum-based secure communication systems, using a new approach that works in the real world to safeguard secrets.
The team's research – published in the journal Physical Review Letters back-to-back with similar work by a group from Hefei, China – also removes a big obstacle to realizing future applications of quantum communication, including a fully functional quantum network.
"I hope that our new quantum key distribution (QKD) system shows to people who take security seriously that QKD has many ...