PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Researchers demonstrate a new strategy to stop the TB bacterium

2013-09-19
(Press-News.org) PROVIDENCE, R.I. [Brown University] — To stay ahead in the race against drug-resistant infections, scientists constantly search for and exploit vulnerabilities in deadly bacteria. Now, researchers from Brown and the Massachusetts Institute of Technology have used a novel compound to exploit an Achilles' heel in the bacterium that causes tuberculosis.

In a series of laboratory experiments, the researchers have shown that it is possible to kill Mycobacterium tuberculosis by inhibiting ClpP, a cellular enzyme that is not targeted by any antibacterial drug on the market. The work is preliminary, but the researchers are hopeful it could point the way to new drugs to treat tuberculosis and other infections that are becoming resistant to traditional antibiotics.

"ClpP has emerged over the last decade or so as a potential drug target in bacteria because they require it to either live or to cause disease," said Jason Sello, associate professor of chemistry at Brown, who led the research. "Our findings indicate that chemical inhibition of the essential ClpP enzyme in Mycobacterium tuberculosis is a viable strategy in anti-tuberculosis drug development."

A paper describing the research has been accepted by the journal ACS Chemical Biology and published online.

The ClpP (pronounced "clip-P") enzyme is sometimes referred to as "the garbage disposal of the bacterial cell," Sello said. It degrades and eliminates proteins inside the cell that are misfolded, damaged, or have outlived their usefulness. While ClpP is dispensable in most bacteria, previous research has shown that it is absolutely essential for the viability of M. tuberculosis. When the gene that makes the protein is knocked out of the bacterium's genome, the organism cannot survive.

"If you can inhibit the function of the enzyme with a small molecule, then you can kill the bacterium," Sello said. "When we began our work, the validity of this approach hadn't been demonstrated."

Sello and Corey Compton, a fourth-year graduate student in his group, set out to do so in the lab. Previous research had found that small molecules called β-lactones inhibit the ClpP protein in other bacteria, suggesting that they might do the same in M. tuberculosis.

To find out, the researchers synthesized 14 β-lactones, each with a slightly different chemical structure. They tested the effect of those molecules against Mycobacterium smegmatis, a close relative of the tuberculosis bacterium often used in the lab because it does not cause disease. Of the 14 molecules, four were shown to kill M. smegmatis in petri dish cultures. To see if the compounds could also kill M. smegmatis's deadly cousin, Sello and Compton sent them to the Institute for Tuberculosis Research at the University of Illinois for further testing. There, they found that the compounds were indeed effective in killing M. tuberculosis as well. The most potent compound they identified — β-lactone 7 — had a structure that was different from all other known inhibitors of ClpP. The potency of this compound is in the same range as streptomycin, a clinically used tuberculosis drug.

The next step was to confirm that the β-lactone 7 and the other compounds were killing the bacteria by reacting with and inhibiting ClpP, as the team expected. To do that, Sello and his team marked the β-lactones with a kind of chemical handle that allowed them to retrieve any proteins with which the molecules had reacted. By putting these tagged β-lactones in a culture of M. smegmatis (the tuberculosis stand-in), the researchers were able to show that they did in fact bind to the two proteins that construct the ClpP enzyme.

"These results were extremely gratifying," Compton said. "The compounds not only interacted with ClpP but they did so quite selectively."

The final step was proving that the reaction between the β-lactones and ClpP actually resulted in the inhibition of the enzyme's activity. For that, Sello turned to Robert Sauer at MIT, an expert on the ClpP enzyme. Sauer and Karl Schmitz, a postdoctoral fellow in his research group, had developed an in vitro assay in which the activity of ClpP could be measured in a test tube. Using this assay, Schmitz and Sauer found that when ClpP was treated with β-lactones the activity of the enzyme was inhibited.

Taken together, the results suggest that molecules that inhibit ClpP could be an important addition to the drug arsenal for fighting tuberculosis.

"Our data validate ClpP as a viable, antibacterial drug target," said Sello. "We have a high degree of confidence that inactivating ClpP will inhibit the growth of Mycobacterium tuberculosis. In principle, a pharmaceutical company could develop new tuberculosis drugs by using the structure of β-lactone 7 as a starting point or by using ClpP inhibition as a design strategy".



INFORMATION:

The work was funded by Brown University and the National Institutes of Health (GM-101988).

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.



ELSE PRESS RELEASES FROM THIS DATE:

Clemson researchers: Different forage affects beef cattle weight, taste

2013-09-19
CLEMSON, S.C. — Cattle are what they eat. The forage — grasses and other plants ­— beef cattle eat affects the nutrition and tastiness of the meat. Clemson University animal science researchers report that steers grazing on one of five forages kept in paddocks showed significant differences in growth, carcass and meat quality. The research can help cattle producers with alternatives to corn and feed when they are looking to add weight and value to their animals prior to sale. A team of researchers supported by the Clemson University Experiment Station, Extension Service ...

New research on potential avocado health benefits presented at International Congress of Nutrition

2013-09-19
Wednesday, September 18, 2013 [Granada, Spain] – New research findings on avocado consumption, presented as two posters at the IUNS 20th International Congress of Nutrition, in Granada, Spain suggest that although calorie consumption at dinner was unchanged, inclusion or addition of fresh Hass Avocado to a meal may help to reduce hunger and the desire to eat in overweight adults. Results also showed that including or adding avocado to a meal resulted in smaller post-meal rises in insulin compared to eating a meal without avocado. Findings were based on a Hass Avocado ...

Scientists develop a new way to identify good fat

2013-09-19
When it comes to fat, you want the brown type and not so much of the white variety because brown fat burns energy to keep you warm and metabolically active, while white fat stores excess energy around your waist, causing health problems. Researchers at The University of Texas Health Science Center at Houston (UTHealth) Medical School are studying brown fat with a goal of fighting obesity. Right now, it is hard for researchers to spot brown fat cells at the molecular level, which is hindering efforts to harness their ability to guard against obesity. To address that issue, ...

The secret life of underground microbes: Plant root microbiomes rule the world

2013-09-19
We often ignore what we cannot see, and yet organisms below the soil's surface play a vital role in plant functions and ecosystem well-being. These microbes can influence a plant's genetic structure, its health, and its interactions with other plants. A new series of articles in a Special Section in the American Journal of Botany on Rhizosphere Interactions: The Root Microbiome explores how root microbiomes influence plants across multiple scales—from cellular, bacterial, and whole plant levels to community and ecosystem levels. Plants are teeming with microbial organisms; ...

Tiny bottles and melting corks: Temperature regulates new delivery system for drugs and fragrances

2013-09-19
Microscopic, bottle-like structures with corks that melt at precisely-controlled temperatures could potentially release drugs inside the body or fragrances onto the skin, according to a recently published study. Typical drug delivery systems act more like sponges than bottles. For example, drugs are absorbed into polymer particles and then allowed to diffuse out over time. The researchers hope that the new system may allow for greater control of drug delivery. Cargo would stay inside the hollow polymer particle when plugged with a solid cork. When the cork is melted by ...

True colors: Female squid have 2 ways to switch color, according to a UCSB study

2013-09-19
(Santa Barbara, Calif.) –– The female common market squid –– AKA Doryteuthis opalescens –– may not be so common after all. Researchers at UC Santa Barbara have discovered that this glamorous cephalopod possesses a pair of stripes that can sparkle with rainbow iridescence. These flank a single stripe, which can go from complete transparency to bright white. This marks the first time that switchable white cells based on reflectins –– the proteins responsible for reflecting light as color –– have been observed. The findings are published in the Journal of Experimental Biology. The ...

Long-stressed Europa likely off-kilter at one time

2013-09-19
By analyzing the distinctive cracks lining the icy face of Europa, NASA scientists found evidence that this moon of Jupiter likely spun around a tilted axis at some point. This tilt could influence calculations of how much of Europa's history is recorded in its frozen shell, how much heat is generated by tides in its ocean, and even how long the ocean has been liquid. "One of the mysteries of Europa is why the orientations of the long, straight cracks called lineaments have changed over time. It turns out that a small tilt, or obliquity, in the spin axis, sometime in ...

New role for protein family could provide path to how crop traits are modified

2013-09-19
BLOOMINGTON, Ind. -- Pioneering new research from a team of Indiana University Bloomington biologists has shown for the first time that a protein which has been long known to be critical for the initiation of protein synthesis in all organisms can also play a role in the regulation of gene expression in some bacteria, and probably land plants as well. The protein, called translation initiation factor 3, or IF3, is one of three proteins that make up the core structure of the machinery needed to guide the joining of messenger RNAs and ribosomes as protein translation commences. ...

Smithsonian experts find e-readers can make reading easier for those with dyslexia

2013-09-19
As e-readers grow in popularity as convenient alternatives to traditional books, researchers at the Smithsonian have found that convenience may not be their only benefit. The team discovered that when e-readers are set up to display only a few words per line, some people with dyslexia can read more easily, quickly and with greater comprehension. Their findings are published in the Sept. 18 issue of the journal PLOS ONE. An element in many cases of dyslexia is called a visual attention deficit. It is marked by an inability to concentrate on letters within words or words ...

Toxoplasma infection permanently shifts balance in cat and mouse game

2013-09-19
The Toxoplasma parasite can be deadly, causing spontaneous abortion in pregnant women or killing immune-compromised patients, but it has even stranger effects in mice. Infected mice lose their fear of cats, which is good for both cats and the parasite, because the cat gets an easy meal and the parasite gets into the cat's intestinal track, the only place it can sexually reproduce and continue its cycle of infection. New research by graduate student Wendy Ingram at the University of California, Berkeley, reveals a scary twist to this scenario: the parasite's effect ...

LAST 30 PRESS RELEASES:

New perspective highlights urgent need for US physician strike regulations

An eye-opening year of extreme weather and climate

Scientists engineer substrates hostile to bacteria but friendly to cells

New tablet shows promise for the control and elimination of intestinal worms

Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston

Depression – discovering faster which treatment will work best for which individual

Breakthrough study reveals unexpected cause of winter ozone pollution

nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory

Generative AI: Uncovering its environmental and social costs

Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure

Dangerous bacterial biofilms have a natural enemy

Food study launched examining bone health of women 60 years and older

CDC awards $1.25M to engineers retooling mine production and safety

Using AI to uncover hospital patients’ long COVID care needs

$1.9M NIH grant will allow researchers to explore how copper kills bacteria

New fossil discovery sheds light on the early evolution of animal nervous systems

A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior

Study shows how plant roots access deeper soils in search of water

Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs

‘What is that?’ UCalgary scientists explain white patch that appears near northern lights

How many children use Tik Tok against the rules? Most, study finds

Scientists find out why aphasia patients lose the ability to talk about the past and future

Tickling the nerves: Why crime content is popular

Intelligent fight: AI enhances cervical cancer detection

Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion

Patient-reported influence of sociopolitical issues on post-Dobbs vasectomy decisions

Radon exposure and gestational diabetes

EMBARGOED UNTIL 1600 GMT, FRIDAY 10 JANUARY 2025: Northumbria space physicist honoured by Royal Astronomical Society

Medicare rules may reduce prescription steering

Red light linked to lowered risk of blood clots

[Press-News.org] Researchers demonstrate a new strategy to stop the TB bacterium