(Press-News.org) Deadly H7N9 avian flu viruses infected people for the first time earlier this year in China, but little is known about how they evolved to become harmful to humans. In a study published by Cell Press on September 19 in Cell Host & Microbe, an in-depth evolutionary analysis of whole-genome sequences of different types of avian flu viruses has revealed that new H7N9 viruses emerged from distinct H9N2 viruses in a two-step process, first occurring in wild birds and then continuing in domestic birds.
"A deep understanding of how the novel H7N9 viruses were generated is of critical importance for formulating proper measures for surveillance and control of these viruses and other potential emerging influenza viruses," says senior study author Taijiao Jiang of the Chinese Academy of Sciences.
First detected in people in late March, H7N9 viruses have resulted in more than 130 human infections and at least 44 deaths. Most of these infections occurred after exposure to infected poultry or contaminated environments rather than person-to-person contact, but these viruses could evolve to become more readily transmissible among humans. This possible threat highlights the importance of understanding the evolutionary history of H7N9 viruses for developing appropriate strategies to monitor and control outbreaks.
To address this problem, Jiang teamed up with Daxin Peng of Yangzhou University and their collaborators to analyze whole-genome sequences of avian flu viruses from humans, poultry, and wild birds from China. They discovered that H7N9 viruses are genetically diverse, suggesting that complex genetic events were involved in their evolution.
Their analysis revealed that the new H7N9 viruses emerged through a two-step process involving the exchange of genetic material between distinct viruses. In the first step, which took place in wild birds, genetic material from H9N2 viruses and unspecified H7 and N9 viruses was mixed to create precursor H7N9 viruses. The second step, which occurred in domestic birds in eastern China early last year, involved the exchange of genetic material between the precursor H7N9 viruses and other H9N2 viruses to create new, genetically diverse H7N9 viruses.
"Our work not only re-enforces the important role of wild birds in the emergence of novel influenza viruses but also highlights the necessity of integrating data from infections in humans, poultry, and wild birds for effective influenza surveillance," Jiang says.
###
Wu et al.: "Sequential Reassortments Underlie Diverse Influenza H7N9 Genotypes in China"
How lethal bird flu viruses evolved
2013-09-20
ELSE PRESS RELEASES FROM THIS DATE:
A genome-forward approach to tackling drug-resistant cancers
2013-09-20
If you really want to understand why a particular human cancer resists treatment, you have to be able to study that tumor—really study it—in a way that just isn't possible in humans. Cancer biologists have been developing a new approach to this challenge, by transplanting human cancers directly from patients to mice whose crippled immune systems will allow those human tissues to grow. According to research published in the Cell Press publication Cell Reports on September 19th, this new approach permits analysis of human cancer in unprecedented detail. The new work shows ...
Genetics in Medicine publishes special issue dedicated to genomics in electronic health records
2013-09-20
September 19, 2013 –Bethesda, MD – Genetic tests can now tell us whether we are at increased risk of various cancers, heart or kidney disease, asthma and a number of other conditions.
Other genetic tests can tell whether you will respond to certain medicines or be harmed by side effects linked to your genetic code. But harnessing that information to benefit individual patients and prevent illnesses in others will require that doctors have access to genomic information for each patient. As health records are converted to digital form, the most likely
place to store and ...
Container's material properties affect the viscosity of water at the nanoscale
2013-09-20
Water pours into a cup at about the same rate regardless of whether the water bottle is made of glass or plastic.
But at nanometer-size scales for water and potentially other fluids, whether the container is made of glass or plastic does make a significant difference. A new study shows that in nanoscopic channels, the effective viscosity of water in channels made of glass can be twice as high as water in plastic channels. Nanoscopic glass channels can make water flow more like ketchup than ordinary H2O.
The effect of container properties on the fluids they hold offers ...
Seismologists puzzle over largest deep earthquake ever recorded
2013-09-20
A magnitude 8.3 earthquake that struck deep beneath the Sea of Okhotsk on May 24, 2013, has left seismologists struggling to explain how it happened. At a depth of about 609 kilometers (378 miles), the intense pressure on the fault should inhibit the kind of rupture that took place.
"It's a mystery how these earthquakes happen. How can rock slide against rock so fast while squeezed by the pressure from 610 kilometers of overlying rock?" said Thorne Lay, professor of Earth and planetary sciences at the University of California, Santa Cruz.
Lay is coauthor of a paper, ...
Yellow peril: Are banana farms contaminating Costa Rica's crocs?
2013-09-20
Shoppers spend over £10 billion on bananas annually and now this demand is being linked to the contamination of Central America's crocodilians. New research, published in Environmental Toxicology and Chemistry, analyses blood samples from spectacled caiman in Costa Rica and finds that intensive pesticide use in plantations leads to contaminated species in protected conservation areas.
"Banana plantations are big business in Costa Rica, which exports an estimated 1.8 million tonnes per year; 10% of the global total," said author Paul Grant from Stellenbosch University, ...
Versatile proteins could be new target for Alzheimer's drugs
2013-09-20
A class of proteins that controls visual system development in the young brain also appears to affect vulnerability to Alzheimer's disease in the aging brain. The proteins, which are found in humans and mice, join a limited roster of molecules that scientists are studying in hopes of finding an effective drug to slow the disease process.
"People are just beginning to look at what these proteins do in the brain. While more research is needed, these proteins may be a brand new target for Alzheimer's drugs," said Carla Shatz, Ph.D., the study's lead investigator. Dr. Shatz ...
Proteins that deliver leucine to prostate cancer cells are therapeutic targets
2013-09-20
Like normal cells, cancer cells require amino acids for growth, maintenance, and cell signaling, and L-type amino acid transporters (LATs) are the delivery vehicles that supply them. Metastatic, castration-resistant prostate cancer (CRPC) cells are highly dependent on LATs to deliver the amino acid leucine that the cells need for growth and proliferation, according to a study published September 19 in the Journal of the National Cancer Institute.
To investigate the function of LATs in prostate cancer, Qian Wang, Ph.D., of the Origins of Cancer Laboratory, Centenary Institute, ...
Study provides big-picture view of how cancer cells are supported by normal cells in and near tumors
2013-09-20
Cold Spring Harbor Laboratory -- Investigators at Cold Spring Harbor Laboratory (CSHL) today report important progress in research aimed at finding ways to fight cancer by targeting the local environment in which tumors grow and from which they draw sustenance.
The targeting of interactions between cancer cells and their environment together with the traditional tactic of directly targeting cancer cells with drugs or radiation is an important new front in the fight against cancer.
The study was conducted by two CSHL scientists from different disciplines who joined ...
Stanford scientists reveal how beta-amyloid may cause Alzheimer's
2013-09-20
STANFORD, Calif. — Scientists at the Stanford University School of Medicine have shown how a protein fragment known as beta-amyloid, strongly implicated in Alzheimer's disease, begins destroying synapses before it clumps into plaques that lead to nerve cell death.
Key features of Alzheimer's, which affects about 5 million Americans, are wholesale loss of synapses — contact points via which nerve cells relay signals to one another — and a parallel deterioration in brain function, notably in the ability to remember.
"Our discovery suggests that Alzheimer's disease starts ...
Circadian clock is key to firing up cell's furnace
2013-09-20
Each of our cells has an energy furnace, and it is called a mitochondrion. A Northwestern University-led research team now has identified a new mode of timekeeping that involves priming the cell's furnace to properly use stored fuel when we are not eating.
The interdisciplinary team has identified the "match" and "flint" responsible for lighting this tiny furnace. And the match is only available when the circadian clock says so, underscoring the importance of the biological timing system to metabolism.
"Circadian clocks are with us on Earth because they have everything ...