(Press-News.org) 1. Researchers at A*STAR's Singapore Immunology Network (SIgN) have discovered a new mechanism involving p53, the famous tumour suppressor, to fight against aggressive cancers. This strategy works by sabotaging the ability of the cancer cells to hide from the immune system. Published in the prestigious Nature Communications journal, this research opens a new avenue to improve targeted cancer therapy by harnessing the body's own immune system to control and eliminate cancer cells.
2. Also known as the "Guardian of the Genome", p53 fights cancer by causing damaged cells to die or by halting the growth of mutant cells before they become cancerous and spread to the rest of the body. Ironically, because of its pivotal role in coordinating a range of cancer-fighting mechanisms in the human body, it is also one of the most important cancer-causing genes when mutated. Studies have shown that more than 50% of all human cancers carry defects in the p53 gene, and almost all other cancers with a normal p53 function carry other defects which indirectly impair the cancer-fighting function of p53.
3. In this study, the SIgN team discovered for the first time that the integrity of p53 affects the production of a special cell surface protein called Major Histocompatibility Complex (MHC) class I. MHC class I molecules on the cancer cell surface serve as targets for the immune system. Therefore, having less MHC I molecules may allow cancer cells to hide better and escape detection by the immune system.
4. Using two cancer cell lines differing only in the integrity of p53 gene, the scientists observed that cancer cells with defective p53 had much less MHC class I on the cell surface. Specifically, they discovered that p53 moderates the expression of MHC I by controlling the amount of another protein called ERAP1 in the cells. Interestingly, a number of disease conditions including tumour malignancy, multiple sclerosis and autoimmune disease were recently reported to be associated with ERAP1.
5. The team leader, Associate Professor Ren Ee Chee from SIgN said, "We were surprised to discover that p53 regulates MHC class I production by acting through ERAP1. This may explain how cancer cells escape detection by our body's immune system. More importantly, it opens up exciting avenues of research to explore how restoration of p53 with drugs such as those that target ERAP1 can help to harness the immune system to recognise and destroy cancer cells."
6. Acting Executive Director of SIgN, Associate Professor Laurent Rénia said, "The team has uncovered a new door to manipulate one of the most studied yet enigmatic cancer-associated genes of our times. I am confident that this work will pave the way for more targeted, efficient and cost-effective treatment for the millions of cancer patients globally."
INFORMATION:
Notes for editor:
The research findings described in this media release can be found in the 22 August online issue of Nature Communications under the title, "p53 increases MHC class I expression by upregulating the endoplasmic reticulum aminopeptidase ERAP1" by Bei Wang1, Dandan Niu1, Liyun Lai1 & Ee Chee Ren1,2*
1Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Singapore 138648, Singapore.
2Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
*Corresponding Author (Email: ren_ee_chee@immunol.a-star.edu.sg)
Full text of the article can be accessed from http://www.nature.com/ncomms/2013/130822/ncomms3359/full/ncomms3359.html
AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH (A*STAR)
For media queries and clarifications, please contact:
Dr. Sarah Chang
Corporate Communications
Agency for Science, Technology and Research
Tel: (65) 6826 6442
Email: chang_kai_chen@a-star.edu.sg
About the Singapore Immunology Network (SIgN)
The Singapore Immunology Network (SIgN), officially inaugurated on 15 January 2008, is a research consortium under the Agency for Science, Technology and Research (A*STAR)'s Biomedical Research Council. The mandate of SIgN is to advance human immunology research and participate in international efforts to combat major health problems. Since its launch, SIgN has grown rapidly and currently includes 250 scientists from 26 different countries around the world working under 28 renowned principal investigators. At SIgN, researchers investigate immunity during infection and various inflammatory conditions including cancer and are supported by cutting edge technological research platforms and core services.
Through this, SIgN aims to build a strong platform in basic human immunology research for better translation of research findings into clinical applications. SIgN also sets out to establish productive links with local and international institutions, and encourage the exchange of ideas and expertise between academic, industrial and clinical partners and thus contribute to a vibrant research environment in Singapore.
For more information about SIgN, please visit http://www.sign.a-star.edu.sg.
About the Agency for Science, Technology and Research (A*STAR)
The Agency for Science, Technology and Research (A*STAR) is Singapore's lead public sector agency that fosters world-class scientific research and talent to drive economic growth and transform Singapore into a vibrant knowledge-based and innovation driven economy.
In line with its mission-oriented mandate, A*STAR spearheads research and development in fields that are essential to growing Singapore's manufacturing sector and catalysing new growth industries. A*STAR supports these economic clusters by providing intellectual, human and industrial capital to its partners in industry.
A*STAR oversees 20 biomedical sciences and physical sciences and engineering research entities, located in Biopolis and Fusionopolis as well as their vicinity. These two R&D hubs, house a bustling and diverse community of local and international research scientists and engineers from A*STAR's research entities as well as a growing number of corporate laboratories.
Please visit http://www.a-star.edu.sg
Promising way to boost body's immune surveillance via p53 in fight against cancer
Researchers at A*STAR's Singapore Immunology Network have discovered a new mechanism involving p53, the famous tumor suppressor, to fight against aggressive cancers
2013-09-20
ELSE PRESS RELEASES FROM THIS DATE:
Early to press means success
2013-09-20
A provocative new study suggests it is straightforward to predict which academics will succeed as publishing scientists.
Those who publish earlier and more often while young are typically the long-term winners.
"We were really surprised," said Professor William Laurance of James Cook University in Cairns, Australia, who led the study.
"It doesn't matter if you go to Harvard or a low-ranked university. If you begin publishing scientific articles when you're still a graduate student, you are far more likely to succeed in the long run."
Laurance's team scrutinized ...
How lethal bird flu viruses evolved
2013-09-20
Deadly H7N9 avian flu viruses infected people for the first time earlier this year in China, but little is known about how they evolved to become harmful to humans. In a study published by Cell Press on September 19 in Cell Host & Microbe, an in-depth evolutionary analysis of whole-genome sequences of different types of avian flu viruses has revealed that new H7N9 viruses emerged from distinct H9N2 viruses in a two-step process, first occurring in wild birds and then continuing in domestic birds.
"A deep understanding of how the novel H7N9 viruses were generated is of ...
A genome-forward approach to tackling drug-resistant cancers
2013-09-20
If you really want to understand why a particular human cancer resists treatment, you have to be able to study that tumor—really study it—in a way that just isn't possible in humans. Cancer biologists have been developing a new approach to this challenge, by transplanting human cancers directly from patients to mice whose crippled immune systems will allow those human tissues to grow. According to research published in the Cell Press publication Cell Reports on September 19th, this new approach permits analysis of human cancer in unprecedented detail. The new work shows ...
Genetics in Medicine publishes special issue dedicated to genomics in electronic health records
2013-09-20
September 19, 2013 –Bethesda, MD – Genetic tests can now tell us whether we are at increased risk of various cancers, heart or kidney disease, asthma and a number of other conditions.
Other genetic tests can tell whether you will respond to certain medicines or be harmed by side effects linked to your genetic code. But harnessing that information to benefit individual patients and prevent illnesses in others will require that doctors have access to genomic information for each patient. As health records are converted to digital form, the most likely
place to store and ...
Container's material properties affect the viscosity of water at the nanoscale
2013-09-20
Water pours into a cup at about the same rate regardless of whether the water bottle is made of glass or plastic.
But at nanometer-size scales for water and potentially other fluids, whether the container is made of glass or plastic does make a significant difference. A new study shows that in nanoscopic channels, the effective viscosity of water in channels made of glass can be twice as high as water in plastic channels. Nanoscopic glass channels can make water flow more like ketchup than ordinary H2O.
The effect of container properties on the fluids they hold offers ...
Seismologists puzzle over largest deep earthquake ever recorded
2013-09-20
A magnitude 8.3 earthquake that struck deep beneath the Sea of Okhotsk on May 24, 2013, has left seismologists struggling to explain how it happened. At a depth of about 609 kilometers (378 miles), the intense pressure on the fault should inhibit the kind of rupture that took place.
"It's a mystery how these earthquakes happen. How can rock slide against rock so fast while squeezed by the pressure from 610 kilometers of overlying rock?" said Thorne Lay, professor of Earth and planetary sciences at the University of California, Santa Cruz.
Lay is coauthor of a paper, ...
Yellow peril: Are banana farms contaminating Costa Rica's crocs?
2013-09-20
Shoppers spend over £10 billion on bananas annually and now this demand is being linked to the contamination of Central America's crocodilians. New research, published in Environmental Toxicology and Chemistry, analyses blood samples from spectacled caiman in Costa Rica and finds that intensive pesticide use in plantations leads to contaminated species in protected conservation areas.
"Banana plantations are big business in Costa Rica, which exports an estimated 1.8 million tonnes per year; 10% of the global total," said author Paul Grant from Stellenbosch University, ...
Versatile proteins could be new target for Alzheimer's drugs
2013-09-20
A class of proteins that controls visual system development in the young brain also appears to affect vulnerability to Alzheimer's disease in the aging brain. The proteins, which are found in humans and mice, join a limited roster of molecules that scientists are studying in hopes of finding an effective drug to slow the disease process.
"People are just beginning to look at what these proteins do in the brain. While more research is needed, these proteins may be a brand new target for Alzheimer's drugs," said Carla Shatz, Ph.D., the study's lead investigator. Dr. Shatz ...
Proteins that deliver leucine to prostate cancer cells are therapeutic targets
2013-09-20
Like normal cells, cancer cells require amino acids for growth, maintenance, and cell signaling, and L-type amino acid transporters (LATs) are the delivery vehicles that supply them. Metastatic, castration-resistant prostate cancer (CRPC) cells are highly dependent on LATs to deliver the amino acid leucine that the cells need for growth and proliferation, according to a study published September 19 in the Journal of the National Cancer Institute.
To investigate the function of LATs in prostate cancer, Qian Wang, Ph.D., of the Origins of Cancer Laboratory, Centenary Institute, ...
Study provides big-picture view of how cancer cells are supported by normal cells in and near tumors
2013-09-20
Cold Spring Harbor Laboratory -- Investigators at Cold Spring Harbor Laboratory (CSHL) today report important progress in research aimed at finding ways to fight cancer by targeting the local environment in which tumors grow and from which they draw sustenance.
The targeting of interactions between cancer cells and their environment together with the traditional tactic of directly targeting cancer cells with drugs or radiation is an important new front in the fight against cancer.
The study was conducted by two CSHL scientists from different disciplines who joined ...
LAST 30 PRESS RELEASES:
UMass Amherst Nursing Professor Emerita honored as ‘Living Legend’
New guidelines aim to improve cystic fibrosis screening
Picky eaters by day, buffet by night: Butterfly, moth diets sync to plant aromas
Pennington Biomedical’s Dr. Leanne Redman honored with the E. V. McCollum Award from the American Society for Nutrition
CCNY physicists uncover electronic interactions mediated via spin waves
Researchers’ 3D-printing formula may transform future of foam
Nurture more important than nature for robotic hand
Drug-delivering aptamers target leukemia stem cells for one-two knockout punch
New study finds that over 95% of sponsored influencer posts on Twitter were not disclosed
New sea grant report helps great lakes fish farmers navigate aquaculture regulations
Strain “trick” improves perovskite solar cells’ efficiency
How GPS helps older drivers stay on the roads
Estrogen and progesterone stimulate the body to make opioids
Dancing with the cells – how acoustically levitating a diamond led to a breakthrough in biotech automation
Machine learning helps construct an evolutionary timeline of bacteria
Cellular regulator of mRNA vaccine revealed... offering new therapeutic options
Animal behavioral diversity at risk in the face of declining biodiversity
Finding their way: GPS ignites independence in older adult drivers
Antibiotic resistance among key bacterial species plateaus over time
‘Some insects are declining but what’s happening to the other 99%?’
Powerful new software platform could reshape biomedical research by making data analysis more accessible
Revealing capillaries and cells in living organs with ultrasound
American College of Physicians awards $260,000 in grants to address equity challenges in obesity care
Researchers from MARE ULisboa discover that the European catfish, an invasive species in Portugal, has a prolonged breeding season, enhancing its invasive potential
Rakesh K. Jain, PhD, FAACR, honored with the 2025 AACR Award for Lifetime Achievement in Cancer Research
Solar cells made of moon dust could power future space exploration
Deporting immigrants may further shrink the health care workforce
Border region emergency medical services in migrant emergency care
Resident physician intentions regarding unionization
Healthy nutrition and physical lifestyle choices lower cancer mortality risk for survivors, new ACS study finds
[Press-News.org] Promising way to boost body's immune surveillance via p53 in fight against cancerResearchers at A*STAR's Singapore Immunology Network have discovered a new mechanism involving p53, the famous tumor suppressor, to fight against aggressive cancers