Newly identified antibodies effectively treat Alzheimer's-like disease in mice
2013-09-26
(Press-News.org) Alzheimer's disease is characterized by the accumulation of particular toxic proteins in the brain that are believed to underlie the cognitive decline in patients. A new study conducted in mice suggests that newly identified antibody treatments can prevent the accumulation of one of these of these toxic components, called tau proteins. The findings, online September 26 in the Cell Press journal Neuron, suggest that these antibodies may provide a basis for a promising therapy for patients with Alzheimer's disease and other neurodegenerative disorders.
In the brains of patients with Alzheimer's disease and several other neurodegenerative conditions, tau proteins aggregate together and become tangled, a process that interferes with the brain's function and can cause many of the symptoms that patients experience.
Investigators led by Drs. David Holtzman and Marc Diamond of Washington University School of Medicine in St. Louis conducted studies in mice to reveal potential treatments to block this process. "We have identified anti-tau antibodies that can strongly reduce tau pathology, decrease tau accumulation, and improve cognitive function in a mouse model of a neurodegenerative disease called frontotemporal dementia," explains Dr. Holtzman. "Similar tau pathology is seen in Alzheimer's disease, implying that this could be an exciting treatment for a large number of patients."
To make their discovery, the researchers used a screening technique to sift through numerous antibodies to isolate those that could prevent uptake of tau aggregates by cells and block subsequent intracellular tau aggregation. They then infused three anti-tau antibodies into the brains of diseased mice over three months. While the anti-tau antibodies markedly reduced tau accumulation and improved cognitive deficits in the animals, a control antibody not directed against tau had no beneficial effects. The findings further support work suggesting that spread of tau aggregates between cells is an important mechanism underlying tau-mediated disease.
This study, which is the first to report the effects of direct infusion of anti-tau antibodies into the brain, has important implications for the design of therapeutic antibodies for patients struggling with some of the most debilitating brain diseases. "In addition to the near-term implications for passive vaccination of patients, it suggests that therapies designed to target propagation of protein aggregation between cells could be very effective," says Dr. Diamond.
###
Neuron, Yanamandra et al.: "Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo."
END
ELSE PRESS RELEASES FROM THIS DATE:
2013-09-26
A research team led by Professor Jun Takahashi and Assistant Professor Asuka Morizane at the Center for iPS Cell Research and Application (CiRA) at Kyoto University, Japan, has carried out a study to compare the impact of immune response in autologous transplantation (transplantation of cells from the subject's own body) and allogeneic transplantation (transplantation of cells from a different individual of the same species). The researchers used cynomolgus monkeys to carry out transplantation into the brain of neural cells derived from iPS cells. Autologous transplantation ...
2013-09-26
Washington, DC (September 23, 2013) – Smoking is a major public health problem, killing approximately 443,000 people every year in the United States. Quitting smoking can have a profound effect on a person's health, but it is also one of the hardest addictions to kick. A recent paper published in the Journal of Communication found that people who engage in health specific social networking sites found it easier to quit smoking.
Joe Phua, University of Georgia, examined health-based social networking sites that focus on helping members to quit smoking. He found that as ...
2013-09-26
Although heavily studied, the specific genetic causes of "complex diseases," a category of disorders which includes autism, diabetes and heart disease, are largely unknown due to byzantine genetic and environmental interactions.
Now, scientists from the University of Chicago have created one of the most expansive analyses to date of the genetic factors at play in complex diseases—by using diseases with known genetic causes to guide them. Analyzing more than 120 million patient records and identifying trends of co-occurrence among hundreds of diseases, they created a unique ...
2013-09-26
NEW YORK, NY (September 26, 2013) — Researchers from Columbia University Medical Center (CUMC) have found that the skeleton, acting through the bone-derived hormone osteocalcin, exerts a powerful influence on prenatal brain development and cognitive functions such as learning, memory, anxiety, and depression in adult mice. Findings from the mouse study could lead to new approaches to the prevention and treatment of neurologic disorders. The study was published today in the online edition of Cell.
"The brain is commonly viewed as an organ that influences other organs ...
2013-09-26
Scientists have used a brand new technique for examining individual stem cells to uncover dramatic differences in the gene expression levels – which genes are turned 'up' or 'down'– between apparently identical 'sister' pairs.
The research, published today (Thursday) in Stem Cell Reports, was conducted and funded by The Institute of Cancer Research, London. It provides the latest evidence that despite having identical DNA, sister stem cells can display considerable differences in their molecular characteristics.
The study showed that DNA methylation, a process that controls ...
2013-09-26
Becoming obese or remaining lean can depend on the dynamics of the mitochondria, the body's energy-producing "battery," according to two new studies by Yale School of Medicine researchers featured as the cover story in the Sept. 26 issue of the journal Cell.
Mitochondria are vital cellular organelles that generate and maintain proper energy levels in complex organisms. Using animal models, the Yale research team studied mitochondria in different populations of brain cells known to be involved in the regulation of appetite. The team found that during the transition from ...
2013-09-26
University of Leicester researchers have revealed that coastal animals have their own biological tidal timer, which is separate from their 24-hour body clock.
Experts from the University's Department of Genetics have published a paper in Current Biology which reveals the discovery of an independent clock driving coastal animals' tidal rhythms.
The paper, Dissociation of Circadian and Circatidal Timekeeping in the Marine Crustacean Eurydice pulchra, follows nearly ten years of research by Leicester geneticists, along with colleagues at the Universities of Bangor, Aberystwyth ...
2013-09-26
(TORONTO, Canada – Sept. 26, 2013) – Stem cell scientists have moved one step closer to producing blood-forming stem cells in a Petri dish by identifying a key regulator controlling their formation in the early embryo, shows research published online today in Cell.
The work was reported by Dr. Gordon Keller, Director of the McEwen Centre for Regenerative Medicine, and Senior Scientist at Princess Margaret Cancer Centre, both at University Health Network. Dr. Keller is also Professor in the Department of Medical Biophysics at the University of Toronto and holds a Canada ...
2013-09-26
PHILADELPHIA - Protein synthesis in the extensions of nerve cells, called dendrites, underlies long-term memory formation in the brain, among other functions. "Thousands of messenger RNAs reside in dendrites, yet the dynamics of how multiple dendrite messenger RNAs translate into their final proteins remain elusive," says James Eberwine, PhD, professor of Pharmacology, Perelman School of Medicine at the University of Pennsylvania, and co-director of the Penn Genome Frontiers Institute.
Dendrites, which branch from the cell body of the neuron, play a key role in the communication ...
2013-09-26
The mood changes of a 'Jekyll-and-Hyde' protein, which sometimes boosts tumour cell growth and at other times suppresses it, have been explained in a new study led by Oxford University researchers.
The researchers in Britain, with collaborators in Singapore and the USA, carried out a comprehensive biological study of the protein E2F, which is abnormal in the vast majority of cancers. They were able to explain the dual natures it can take up in cells in the body, and indicate how it could be a potent target for developing new cancer drugs.
The Oxford University scientists ...
LAST 30 PRESS RELEASES:
[Press-News.org] Newly identified antibodies effectively treat Alzheimer's-like disease in mice