(Press-News.org) COLUMBUS, Ohio – A tiny but unexpected change to a segment of RNA in a single-cell organism looks a lot like a mistake, but is instead a change to the genetic information that is essential to the organism's survival.
Scientists have discovered this RNA "edit" in Trypanosoma brucei, a parasite that causes sleeping sickness in Africa and Chagas disease in Latin America. Though the organism is a model system for this work, the finding could lead to a new drug target to fight the parasite if higher species don't share this genetic behavior.
Some of the organism's genetic activity was already known. In the case of gene products called tRNAs, which help assemble the amino acids that make proteins, T. brucei was known to have only one tRNA with a specific segment of RNA that ensures the tRNA's proper function. Additionally, examples of RNA editing have been discovered before.
But in this case, the way genetic information necessary for the protein production process was changed – through a swap of three nucleotides for three others that are completely out of place – has never been seen before.
"These are changes for which no chemistry is known and has never been described. We don't know what enzyme is involved and that is the million-dollar question: What mechanism is doing this? We haven't a clue," said Juan Alfonzo, professor of microbiology at The Ohio State University and senior author of the study.
"If the activity is unique to a trypanosome, then you have a good drug target. If it is widespread, then you have to reconsider one more time what coding sequences really mean in the sense that you can indeed change them in a very programmed fashion by activities that don't exist – that have not been described," said Alfonzo, also an investigator in Ohio State's Center for RNA Biology.
The work is the result of Alfonzo's longtime collaboration with co-lead author Christopher Trotta, senior director of biology at PTC Therapeutics in South Plainfield, N.J.
The study appears online in the journal Molecular Cell and is scheduled for print publication on Oct. 24.
The finding was not only unexpected, but serendipitous. Alfonzo's lab was analyzing an enzyme affecting T. brucei's tRNA behavior in response to a request from Trotta, a drug developer who is considered a pioneer of research on tRNAs. To begin the analysis, Alfonzo sought to identify the intron, a specific segment of RNA, that needs to be removed before the tRNA can participate in the selection of the right amino acids during protein production.
This critical function of removing the intron is called splicing – in essence, a pre-requisite chemical reaction affirming that tRNA can deliver the correct instructions for protein production. If a tRNA is not spliced, it will not work in protein production and the cell will die.
The trouble was, Alfonzo couldn't locate the intron that he knew was there. After multiple attempts, he found that the intron's sequence in this organism changed after transcription, the point at which a copy of RNA is made from a DNA sequence as the first step of gene expression.
This edit – hard to find because of its odd nature – consisted of a change to three nucleotides, the molecules that form DNA and RNA. Because of its rarity and unusual nature, it is called a noncanonical edit.
"It's noncanonical because it is not typical. It is completely not typical," Alfonzo said. "And for the first time, we show the biological significance. We show that if you don't edit, you don't splice. This editing is required for splicing, and splicing is required for functionality. Otherwise, cells die."
Previously known methods of RNA editing include deamination, the removal of sections of molecules from the RNA that change the message from the DNA, and nucleotide insertion, deletion or exchange. The editing described here is a swap of three nucleotides for three others that, according to the rules of biology, do not belong where they end up. This is why it looks like a mistake.
Colleagues have suggested that this edit should have been identified by researchers who do deep sequencing, which involves repeated readings of all nucleotides within an RNA molecule, Alfonzo noted. But he is not surprised that technology didn't yield these results.
"In massive sequencing, you match RNAs to the sequence in the genome. Any mismatch is called a sequence mistake and is thrown in the trash. So this noncanonical editing may well be in the trash bin of many of these deep sequencing researchers," he said.
###
This work is partially supported by a grant from the National Institutes of Health.
Additional co-authors include Mary Anne Rubio, Zdeněk Paris, Kirk Gaston, Ian Fleming and Paul Sample, all of Ohio State's Department of Microbiology and Center for RNA Biology. Alfonzo is also a member of the Ohio State Biochemistry Program.
Contact: Juan Alfonzo, (614) 292-0004; Alfonzo.1@osu.edu (Email is the best way to reach Alfonzo.)
Written by Emily Caldwell, (614) 292-8310; Caldwell.151@osu.edu
END
NEW YORK (October 3, 2013) -- Using powerful genetic sequencing technology, a team of investigators, led by researchers at the Icahn School of Medicine at Mount Sinai, scanned the genome of hundreds of individuals, and discovered those diagnosed with autism spectrum disorder (ASD) were more likely to have gene deletions than were people without the disorder. That means those individuals -- seven percent of the study group -- had one copy of one or more genes when they should have had two.
The scientists further report, in the American Journal of Human Genetics, that ...
Often deadly "triple-negative" breast cancers might be effectively treated in many cases with a drug that targets a previously unknown vulnerability in the tumors, according to a UC San Francisco researcher who described her discovery in a study published online October 3, 2013 in the journal Cancer Cell.
UCSF researcher Luika Timmerman, PhD, an investigator in the UCSF Helen Diller Family Comprehensive Cancer Center, found that many cell lines obtained from triple-negative breast cancer are especially dependent on cystine, one of the 20 amino acids that are the building ...
JUPITER, FL, October 3, 2013 – Scientists from the Florida campus of The Scripps Research Institute (TSRI) have identified a new drug candidate for an inherited form of cancer with no known cure.
The new study showed the drug candidate—known as FRAX97—slowed the proliferation and progression of tumor cells in animal models of Neurofibromatosis type 2. This inherited type of cancer, caused by mutations in the anti-tumor gene NF2, leads to tumors of the auditory nerve that connects the inner ear to the brain.
The new compound, originally developed to treat neurodegenerative ...
Portland, Ore., USA (October 3, 2013) --- Lactating cats not only increase their total calorie consumption, they also significantly alter the make-up of their diet to meet the demands of feeding a litter, research from the WALTHAM® Centre for Pet Nutrition has shown. The research provides intriguing insights into cats' feeding behaviour and strong evidence that they are able to adapt their macronutrient intake, i.e. their intake of protein, fat and carbohydrate, to meet their physiological requirements.
"It's no surprise that, just like humans, cats require more energy ...
A new picture of how the nervous system interacts with the immune system to cause the itch and inflammation associated with eczema, a chronic skin disease, could lead to new therapies for the condition, according to University of California, Berkeley, scientists.
Some 10 percent of the population suffers from eczema, or atopic dermatitis, at some point in their lives, but there are no cures or even good treatments for it. Symptoms range from dry, flaky and itchy skin to flaming red rashes, and in severe cases, particularly in children, the disease often progresses to ...
When developing new drugs, monitoring cellular responses to candidate compounds is essential for assessing their efficacy and safety. Researchers from the RIKEN Center for Life Science Technologies report a new method to monitor and quantify the activity of gene promoters during the response to a drug, using the advanced gene expression analysis method CAGE followed by single-molecule sequencing. This research paves the way to a more precise analysis of cellular responses to drugs, at the level of individual promoters.
The study is published this week in the journal ...
Every day we recognize friends, family, and co-workers from afar -- even before we can distinctly see a face. New research reveals that when facial features are difficult to make out, we readily use information about someone's body to identify them -- even when we don't know we're doing so.
"Psychologists and computer scientists have concentrated almost exclusively on the role of the face in person recognition," explains lead researcher, Allyson Rice of the University of Texas at Dallas. "But our results show that the body can also provide important and useful identity ...
A study concerning the evolution of mitochondrial DNA, performed by researchers from the Universitat Autònoma de Barcelona (UAB), has allowed to determine the frequency and pattern of heteroplasmy in the complete mitochondrial genome using a representative sample of the European population. This phenomenon, which indicates the presence of different mitochondrial DNA types in a cell or an individual, can be found in more than half of the population. The data obtained indicates that many of the newly arising mutations found never reach fixation at the population level due ...
Researchers from University of Copenhagen have discovered big differences in the variability of eating habits among pigs. The newly published study showed that for some (pigs with certain genetic variants) overeating was normal behavior and for a particular group of pigs there was clear evidence they were genetically programmed to eat more food than others. The study was led by professor Haja Kadarmideen and is the first study in the world looking at pig to human comparative genetic mapping to reveal key genes on the human genome that are known to be involved in human obesity. ...
Think of a frequently used noun or verb in our language. Try to count how many times you have uttered it in the last two hours. Now, do the same with the article "the". The language we speak is not only made of content words (nouns, verbs, adjectives, for instance) but also of lots of words that provide a support to them (articles, prepositions, etc.) that are used much more frequently than the first (function words, or functors). Despite the huge variability of known languages, language scientists were able to divide them roughly into two main categories: the languages ...