(Press-News.org) CAMBRIDGE, MA -- In 2011, when an MIT senior named John Romanishin proposed a new design for modular robots to his robotics professor, Daniela Rus, she said, "That can't be done."
Two years later, Rus showed her colleague Hod Lipson, a robotics researcher at Cornell University, a video of prototype robots, based on Romanishin's design, in action. "That can't be done," Lipson said.
In November, Romanishin — now a research scientist in MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) — Rus, and postdoc Kyle Gilpin will establish once and for all that it can be done, when they present a paper describing their new robots at the IEEE/RSJ International Conference on Intelligent Robots and Systems.
Known as M-Blocks, the robots are cubes with no external moving parts. Nonetheless, they're able to climb over and around one another, leap through the air, roll across the ground, and even move while suspended upside down from metallic surfaces.
Inside each M-Block is a flywheel that can reach speeds of 20,000 revolutions per minute; when the flywheel is braked, it imparts its angular momentum to the cube. On each edge of an M-Block, and on every face, are cleverly arranged permanent magnets that allow any two cubes to attach to each other.
"It's one of these things that the [modular-robotics] community has been trying to do for a long time," says Rus, a professor of electrical engineering and computer science and director of CSAIL. "We just needed a creative insight and somebody who was passionate enough to keep coming at it — despite being discouraged."
Embodied abstraction
As Rus explains, researchers studying reconfigurable robots have long used an abstraction called the sliding-cube model. In this model, if two cubes are face to face, one of them can slide up the side of the other and, without changing orientation, slide across its top.
The sliding-cube model simplifies the development of self-assembly algorithms, but the robots that implement them tend to be much more complex devices. Rus' group, for instance, previously developed a modular robot called the Molecule, which consisted of two cubes connected by an angled bar and had 18 separate motors. "We were quite proud of it at the time," Rus says.
According to Gilpin, existing modular-robot systems are also "statically stable," meaning that "you can pause the motion at any point, and they'll stay where they are." What enabled the MIT researchers to drastically simplify their robots' design was giving up on the principle of static stability.
"There's a point in time when the cube is essentially flying through the air," Gilpin says. "And you are depending on the magnets to bring it into alignment when it lands. That's something that's totally unique to this system."
That's also what made Rus skeptical about Romanishin's initial proposal. "I asked him build a prototype," Rus says. "Then I said, 'OK, maybe I was wrong.'"
Sticking the landing
To compensate for its static instability, the researchers' robot relies on some clever engineering. On each edge of a cube are two cylindrical magnets, mounted like rolling pins. When two cubes approach each other, the magnets naturally rotate, so that north poles align with south, and vice versa. Any face of any cube can thus attach to any face of any other.
The cubes' edges also have a slight bevel, so when two cubes are face to face, there's a slight gap between their magnets. When one cube begins to flip on top of another, the bevels, and thus the magnets, touch. The connection between the cubes becomes much stronger, anchoring the pivot. On each face of a cube are four more pairs of smaller magnets, arranged symmetrically, which help snap a moving cube into place when it lands on top of another.
As with any modular-robot system, the hope is that the modules can be miniaturized: the ultimate aim of most such research is hordes of swarming microbots that can self-assemble, like the "liquid steel" androids in the movie "Terminator II." And the simplicity of the cubes' design makes miniaturization promising.
But the researchers believe that a more refined version of their system could prove useful even at something like its current scale. Swarms of mobile cubes could temporarily repair bridges or buildings during emergencies, or raise and reconfigure scaffolding for building projects. They could assemble into different types of furniture or heavy equipment as needed. And they could swarm into environments hostile or inaccessible to humans, diagnose problems, and reorganize themselves to provide solutions.
Strength in diversity
The researchers also imagine that among the mobile cubes could be special-purpose cubes, containing cameras, or lights, or battery packs, or other equipment, which the mobile cubes could transport. "In the vast majority of other modular systems, an individual module cannot move on its own," Gilpin says. "If you drop one of these along the way, or something goes wrong, it can rejoin the group, no problem."
In ongoing work, the MIT researchers are building an army of 100 cubes, each of which can move in any direction, and designing algorithms to guide them. "We want hundreds of cubes, scattered randomly across the floor, to be able to identify each other, coalesce, and autonomously transform into a chair, or a ladder, or a desk, on demand," Romanishin says.
###
Written by Larry Hardesty, MIT News Office
Surprisingly simple scheme for self-assembling robots
2013-10-04
ELSE PRESS RELEASES FROM THIS DATE:
Dartmouth researcher finds a new role for the benefits of oxygen
2013-10-04
Hanover, N.H.—In a study published in published in EMBO Molecular Medicine, a Dartmouth researcher found that dying heart cells are kept alive with spikes of oxygen.
During a heart attack when the flow of oxygen-rich blood to a section of the heart is interrupted, and not quickly restored, heart muscle begins dying. Deprived of oxygen and other essential nutrients, cell death continues occurring over a period of time leading to progressive loss of heart function and congestive heart failure.
Current therapies are not effective at limiting cell loss—they only slow down ...
Well-connected hemispheres of Einstein's brain may have sparked his brilliance
2013-10-04
TALLAHASSEE, Fla. - The left and right hemispheres of Albert Einstein's brain were unusually well connected to each other and may have contributed to his brilliance, according to a new study conducted in part by Florida State University evolutionary anthropologist Dean Falk.
"This study, more than any other to date, really gets at the 'inside' of Einstein's brain," Falk said. "It provides new information that helps make sense of what is known about the surface of Einstein's brain."
The study, "The Corpus Callosum of Albert Einstein's Brain: Another Clue to His High ...
Stem cells engineered to become targeted drug factories
2013-10-04
A group of Brigham and Women's Hospital, and Harvard Stem Cell Institute researchers and collaborators at MIT and MGH have found a way to use stem cells as drug delivery vehicles.
The researchers inserted modified strands of messenger RNA into connective tissue stem cells—called mesenchymal stem cells—which stimulated the cells to produce adhesive surface proteins and secrete interleukin-10, an anti-inflammatory molecule. When injected into the bloodstream of a mouse, these modified human stem cells were able to target and stick to sites of inflammation and release biological ...
Ultraviolet light to the extreme
2013-10-04
WASHINGTON, D.C. Oct. 4, 2013 -- When you heat a tiny droplet of liquid tin with a laser, plasma forms on the surface of the droplet and produces extreme ultraviolet (EUV) light, which has a higher frequency and greater energy than normal ultraviolet.
Now, for the first time, researchers have mapped this EUV emission and developed a theoretical model that explains how the emission depends on the three-dimensional shape of the plasma. In doing so, they found a previously untapped source of EUV light, which could be useful for various applications including semiconductor ...
NSF awards $12 million to SDSC to deploy 'Comet' supercomputer
2013-10-04
The San Diego Supercomputer Center (SDSC) at the University of California, San Diego, has been awarded a $12-million grant from the National Science Foundation (NSF) to deploy Comet, a new petascale supercomputer designed to transform advanced scientific computing by expanding access and capacity among traditional as well as non-traditional research domains. Comet will be capable of an overall peak performance of nearly two petaflops, or two quadrillion operations per second.
"Supercomputers such as Comet and our data-intensive Gordon system are helping to fulfill the ...
New kind of microscope uses neutrons
2013-10-04
CAMBRIDGE, MA -- Researchers at MIT, working with partners at NASA, have developed a new concept for a microscope that would use neutrons — subatomic particles with no electrical charge — instead of beams of light or electrons to create high-resolution images.
Among other features, neutron-based instruments have the ability to probe inside metal objects — such as fuel cells, batteries, and engines, even when in use — to learn details of their internal structure. Neutron instruments are also uniquely sensitive to magnetic properties and to lighter elements that are important ...
Reading literary fiction improves 'mind-reading' skills
2013-10-04
NEW YORK (October 3, 2013)—Heated debates about the quantifiable value of arts and literature are a common feature of American social discourse. Now, two researchers from The New School for Social Research have published a paper in Science demonstrating that reading literary fiction enhances a set of skills and thought processes fundamental to complex social relationships—and functional societies.
Ph.D. candidate David Comer Kidd and his advisor, professor of psychology Emanuele Castano performed five experiments to measure the effect of reading literary fiction on participants' ...
Analysis of little-explored regions of genome reveals dozens of potential cancer triggers
2013-10-04
A massive data analysis of natural genetic variants in humans and variants in cancer tumors has implicated dozens of mutations in the development of breast and prostate cancer, a Yale-led team has found.
The newly discovered mutations are in regions of DNA that do not code for proteins but instead influence activity of other genes. These areas represent an unexplored world that will allow researchers and doctors to gain new insight into the causes and treatment of cancer, said the scientists.
"This allows us to take a systematic approach to cancer genomics," said Mark ...
A question of style
2013-10-04
This news release is available in German. Most molecules occur in several shapes, which may behave very differently. Using a sorting machine for molecules, a German–Swiss research team can now for the first time directly measure the various reaction rates of different forms of the same compound. The team, led by DESY scientist Prof. Jochen Küpper from the Hamburg Center for Free-Electron Laser Science CFEL and Prof. Stefan Willitsch from the University of Basel, presents its work in the US journal "Science". CFEL is a collaboration of DESY, the University of Hamburg ...
NIST physicists 'entangle' microscopic drum's beat with electrical signals
2013-10-04
BOULDER, Colo -- Extending evidence of quantum behavior farther into the large-scale world of everyday life, physicists at the National Institute of Standards and Technology (NIST) have "entangled"—linked the properties of—a microscopic mechanical drum with electrical signals.
The results confirm that NIST's micro-drum could be used as a quantum memory in future quantum computers, which would harness the rules of quantum physics to solve important problems that are intractable today. The work also marks the first-ever entanglement of a macroscopic oscillator, expanding ...