(Press-News.org) In a Neuron article published online October 10th, recent Nobel Laureate Thomas C. Südhof challenges long-standing ideas on how neurotransmitter gets released at neuronal synapses. On October 7th, Südhof won the Nobel Prize in Physiology or Medicine, alongside James Rothman and Randy Schekman, for related work on how vesicles—such as those in neurons that contain neurotransmitter—are transported within cells.
Neurotransmitter-containing vesicles are found inside neurons very close to the end of the axon. Here, they can quickly fuse with the neuronal membrane surrounding the axon to spill their contents into the synapse. How these vesicles are able to fuse with the membrane has been controversial, however, and understanding this process would give researchers much greater insight how neurons communicate with each other. Previously, it was thought that proteins found on the outside of the vesicles and on the axon membrane (called SNARE proteins) would come together and physically form a pore through which the contents of the vesicle—the neurotransmitter—could be released into the synapse. Now, the new findings from Südhof suggest that these proteins may not form a pore at all. Instead, their main role may be to physically force the vesicle and the axon membrane to get very close to each other; once they are forced into contact, the two appear able to fuse spontaneously.
"The importance of SNARE transmembrane regions has never been tested in a physiological fusion reaction," says Dr. Südhof. "We show that the SNARE transmembrane regions are dispensible for fusion as such but are important for maintaining the normal efficiency of regulated fusion. These findings rule out an essential participation of the SNARE transmembrane regions in fusion and are consistent with the notion that the SNAREs function in fusion as force generators, i.e., that their function is to force the membranes close together." The results are controversial due to years of research supporting the SNARE-protein pore hypothesis. These provocative findings could change long-held models for how neurotransmitters are released from neurons and suggest that there remain many open questions about the role of SNAREs in neurotransmitter release at synapses.
INFORMATION:
Neuron, Zhou et al.: "Lipid-Anchored SNAREs Lacking Transmembrane Regions Fully Support Membrane Fusion during Neurotransmitter Release."
Nobel Prize winner reports new model for neurotransmitter release
2013-10-10
ELSE PRESS RELEASES FROM THIS DATE:
Researchers identify liver cancer progenitor cells before tumors become visible
2013-10-10
For the first time, researchers at the University of California, San Diego School of Medicine have isolated and characterized the progenitor cells that eventually give rise to malignant hepatocellular carcinoma (HCC) tumors – the most common form of liver cancer. The researchers found ways to identify and isolate the HCC progenitor cells (HcPC) long before actual tumors were apparent.
Writing in the October 10, 2013 issue of the journal Cell, principal investigator Michael Karin, PhD, Distinguished Professor of Pharmacology and Pathology, and colleagues report that HcPC ...
Stomach cells naturally revert to stem cells
2013-10-10
New research has shown that the stomach naturally produces more stem cells than previously realized, likely for repair of injuries from infections, digestive fluids and the foods we eat.
Stem cells can make multiple kinds of specialized cells, and scientists have been working for years to use that ability to repair injuries throughout the body. But causing specialized adult cells to revert to stem cells and work on repairs has been challenging.
Scientists from Washington University School of Medicine in St. Louis and Utrecht Medical Center in the Netherlands report ...
Eat more, weigh less: Worm study provides clues to better fat-loss therapies for humans
2013-10-10
LA JOLLA, CA—October 10, 2013 —Scientists at The Scripps Research Institute (TSRI) have discovered key details of a brain-to-body signaling circuit that enables roundworms to lose weight independently of food intake. The weight-loss circuit is activated by combined signals from the worm versions of the neurotransmitters serotonin and adrenaline, and there are reasons to suspect that it exists in a similar form in humans and other mammals.
"Boosting serotonin signaling has been seen as a viable strategy for weight loss in people, but our results hint that boosting serotonin ...
Stem cell breakthrough could set up future transplant therapies
2013-10-10
A new method for creating stem cells for the human liver and pancreas, which could enable both cell types to be grown in sufficient quantities for clinical use, has been developed by scientists.
Using the technique, researchers have for the first time been able to grow a pure, self-renewing population of stem cells specific to the human foregut, the upper section of the human digestive system.
These so-called "Foregut stem cells" could then be developed further to produce liver or pancreatic cells. The method significantly improves on existing techniques for cultivating ...
Soft shells and strange star clusters
2013-10-10
PGC 6240 is an elliptical galaxy that resembles a pale rose in the sky, with hazy shells of stars encircling a very bright centre. Some of these shells are packed close to the centre of the galaxy, while others are flung further out into space. Several wisps of material have been thrown so far that they appear to be almost detached from the galaxy altogether.
Astronomers have studied PGC 6240 in detail due to this structure, and also because of its surrounding globular clusters — dense, tightly packed groups of gravitationally bound stars that orbit galaxies. Over 150 ...
Direct 'writing' of artificial cell membranes on graphene
2013-10-10
Writing in Nature Communications, researchers at The University of Manchester led by Dr Aravind Vijayaraghavan, and Dr Michael Hirtz at the Karlsruhe Institute of Technology (KIT), have demonstrated that membranes can be directly 'written' on to a graphene surface using a technique known as Lipid Dip-Pen Nanolithography (L-DPN).
The human body contains 100 trillion cells, each of which is enveloped in a cell membrane which is essentially a phospholipid bi-layer membrane. These cell membranes have a plethora of proteins, ion channels and other molecules embedded in them, ...
Look out above! Experiment explores innate visual behavior in mice
2013-10-10
When you're a tiny mouse in the wild, spotting aerial predators—like hawks and owls—is essential to your survival. But once you see an owl, how is this visual cue processed into a behavior that helps you to avoid an attack? Using an experimental video technique, researchers at the California Institute of Technology (Caltech) have now developed a simple new stimulus with which they can spur the mouse's escape plans. This new stimulus allows the researchers to narrow down cell types in the retina that could aid in the detection of aerial predators.
"The mouse has recently ...
Super-enhancers seen as 'Rosetta Stone' for dialog between genes and disease
2013-10-10
CAMBRIDGE, Mass. (October 10, 2013) – Having recently discovered a set of powerful gene regulators that control cell identity in a few mouse and human cell types, Whitehead Institute scientists are now showing that these regulators—which they named "super-enhancers"—act across a vast array of human cell types and are enriched in mutated regions of the genome that are closely associated with a broad spectrum of diseases.
The findings, published online today by the journal Cell, suggest that these super-enhancers, first described in Cell several months ago by Whitehead ...
Genes predispose some people to focus on the negative
2013-10-10
A new study by a University of British Columbia researcher finds that some people are genetically predisposed to see the world darkly.
The study, published in Psychological Science, finds that a previously known gene variant can cause individuals to perceive emotional events—especially negative ones – more vividly than others.
"This is the first study to find that this genetic variation can significantly affect how people see and experience the world," says Prof. Rebecca Todd of UBC's Dept. of Psychology. "The findings suggest people experience emotional aspects of ...
Scientists find potential new targets for anti-inflammatory therapies
2013-10-10
LA JOLLA, CA -- October 9, 2013 -- A team led by scientists at The Scripps Research Institute (TSRI) has identified key signaling proteins in the inflammation process that contribute to the development of inflammatory diseases such as rheumatoid arthritis, psoriasis, sepsis and inflammatory bowel diseases. The finding highlights possible new ways of treating these inflammation disorders, which sicken or kill millions of people around the world each year.
"We hope our approach will lead to the development of drugs that augment current anti-inflammatory strategies," said ...