(Press-News.org) October 10, 2013, New York, NY and Oxford, UK – A Ludwig Cancer Research study published in Cell today identifies a common mutation that dramatically increases the risk for testicular cancer—and describes a likely molecular mechanism by which it exerts that effect. The researchers also suggest why, despite its potential lethality, the genetic variation has been favored by natural selection to become common in light-skinned people. It appears this mutation might aid the tanning of Caucasian skin in response to sunlight, protecting it from UV radiation, which can burn and cause cancer.
"Knowing the inherited genetics of cancer has great potential in medicine," says co-author Gareth Bond who is a Ludwig researcher at Oxford University. "It can aid the development of tests to predict the risk of developing particular malignancies. It can also tell physicians about the likely prognosis of cancers, and inform therapeutic choices, improving management of the disease."
The DNA sequence of the human genome is peppered with tiny variations that help account for many of the differences between people, from the color of their eyes to the curliness of their hair to their risk of obesity. These mutations, known as single nucleotide polymorphisms (SNPs)—because they change only one base, or "letter", in the sequence—are also associated with risk for a wide variety of diseases, not least cancers. But in most cases, it is unclear how any particular SNP contributes to the risk for developing its associated illness.
The SNP discovered by Bond and co-author Douglas Bell of the US National Institute of Environmental Health Sciences affects the activity of a protein named p53, which is best known as the cell's most important defense mechanism against cancer. In response to various stimuli, p53 binds to a specific pattern of DNA sequences—known as response elements—to turn on a dizzying array of genes that drive everything from embryonic development to the induced suicide of potentially cancerous cells. The team analyzed databases containing 62,567 SNPs associated with cancer, looking for mutations that alter p53's ability to turn on its target genes. They report the detection of one that boosts p53's association with a key response element and show that this particular SNP is very tightly linked to the risk of developing testicular cancer.
The SNP resides in a p53 response element that activates the production of a protein named KIT ligand (KITLG). The study shows that KITLG activation by p53 can fuel the proliferation of cells. Experiments also suggest that the SNP significantly boosts p53's ability to regulate KITLG in a variety of cells. "It appears," Bell explains, "that this particular variant permits testicular stem cells to grow in the presence of DNA damage, when they are supposed to stop growing, since such damage can lead to cancer."
An evolutionary genomic analysis conducted by the team reveals that inherited SNPs that alter p53's ability to bind its response elements have been ruthlessly eliminated by natural selection. Yet their analysis also reveals that their identified SNP (named KITLG p53 RE SNP, rs4590952) has not only slipped through the selective, negative filters of evolution, but has been positively selected in the Caucasian gene pool.
To explain why this SNP might have been positively selected and escaped negative selection, the authors draw from their own and other studies of the skin's response to sunlight. Though UV light can burn and cause cancer, it is also important to human health, necessary for the production of the essential nutrient vitamin D, among other things. To balance the benefits of sunlight against its inherent dangers, the body makes the pigment melanin. The detection of UV damage activates p53 in certain cells of the skin, fueling the secretion of KITLG and prompting pigment-making cells called melanocytes to multiply and ramp up melanin production. The result: a protective tan.
Bell, Bond and their team confirm in their experiments that p53 drives KITLG production and melanocyte proliferation in mice exposed to high levels of UV light. Their genomic analysis shows, notably, that the version of the KITLG p53 response element that responds better to p53 is found in the genomes of 79% of Caucasian Europeans, but only 24% of Africans—who have a four to five-fold lower risk for testicular cancer than do Caucasians.
"Over the course of evolution, as humans migrated out of Africa into the dimly lit terrain of the north, they developed lighter skin, most likely to adapt to the lower levels of sunlight," explains Bond. "Unfortunately, that adaptation also left their skin susceptible to UV damage. It is intriguing to speculate that the better version of the KITLG p53 response element is evolution's compensation for that vulnerability. But it appears to come at a cost—which is a greater risk for testicular cancer."
###
The study was supported by the Ludwig Institute for Cancer Research, the Development Fund-Oxford Cancer Research Centre-University of Oxford, the Nuffield Department of Medicine, the Clarendon Fund, the Wellcome Trust and the Intramural Research Program of National Institute of Environmental Health Sciences-National Institutes of Health.
About Ludwig Cancer Research
Ludwig Cancer Research is an international collaborative network of acclaimed scientists with a 40-year legacy of pioneering cancer discoveries. Ludwig combines basic research with the ability to translate its discoveries and conduct clinical trials to accelerate the development of new cancer diagnostics and therapies. Since 1971, Ludwig has invested more than $1.6 billion in life-changing cancer research through the not-for-profit Ludwig Institute for Cancer Research and the six U.S.-based Ludwig Centers.
Gareth Bond is an assistant member at the Ludwig Institute for Cancer Research and is based at Oxford University. For more information on the Bond lab, click here: http://www.ludwigcancerresearch.org/location/oxford-branch/gareth-l-bond-lab.
For further information please contact Rachel Steinhardt, rsteinhardt@licr.org or +1-212-450-1582.
A genetic variation that could protect skin from sun damage fuels testicular cancer
2013-10-10
ELSE PRESS RELEASES FROM THIS DATE:
Overweight and obese children face high risk of hypertension
2013-10-10
High body weight in children and adolescents is strongly associated with the likelihood of hypertension, according to a Kaiser Permanente Southern California study published today in The Journal of Clinical Hypertension.
Researchers found that young people who are overweight are twice as likely as their normal-weight peers to have hypertension; moderately obese youths have four times higher risk; and extremely obese children and adolescents are 10 times more likely to have hypertension. The study also found 10 percent of youths who are extremely obese have hypertension ...
Nobel Prize winner reports new model for neurotransmitter release
2013-10-10
In a Neuron article published online October 10th, recent Nobel Laureate Thomas C. Südhof challenges long-standing ideas on how neurotransmitter gets released at neuronal synapses. On October 7th, Südhof won the Nobel Prize in Physiology or Medicine, alongside James Rothman and Randy Schekman, for related work on how vesicles—such as those in neurons that contain neurotransmitter—are transported within cells.
Neurotransmitter-containing vesicles are found inside neurons very close to the end of the axon. Here, they can quickly fuse with the neuronal membrane surrounding ...
Researchers identify liver cancer progenitor cells before tumors become visible
2013-10-10
For the first time, researchers at the University of California, San Diego School of Medicine have isolated and characterized the progenitor cells that eventually give rise to malignant hepatocellular carcinoma (HCC) tumors – the most common form of liver cancer. The researchers found ways to identify and isolate the HCC progenitor cells (HcPC) long before actual tumors were apparent.
Writing in the October 10, 2013 issue of the journal Cell, principal investigator Michael Karin, PhD, Distinguished Professor of Pharmacology and Pathology, and colleagues report that HcPC ...
Stomach cells naturally revert to stem cells
2013-10-10
New research has shown that the stomach naturally produces more stem cells than previously realized, likely for repair of injuries from infections, digestive fluids and the foods we eat.
Stem cells can make multiple kinds of specialized cells, and scientists have been working for years to use that ability to repair injuries throughout the body. But causing specialized adult cells to revert to stem cells and work on repairs has been challenging.
Scientists from Washington University School of Medicine in St. Louis and Utrecht Medical Center in the Netherlands report ...
Eat more, weigh less: Worm study provides clues to better fat-loss therapies for humans
2013-10-10
LA JOLLA, CA—October 10, 2013 —Scientists at The Scripps Research Institute (TSRI) have discovered key details of a brain-to-body signaling circuit that enables roundworms to lose weight independently of food intake. The weight-loss circuit is activated by combined signals from the worm versions of the neurotransmitters serotonin and adrenaline, and there are reasons to suspect that it exists in a similar form in humans and other mammals.
"Boosting serotonin signaling has been seen as a viable strategy for weight loss in people, but our results hint that boosting serotonin ...
Stem cell breakthrough could set up future transplant therapies
2013-10-10
A new method for creating stem cells for the human liver and pancreas, which could enable both cell types to be grown in sufficient quantities for clinical use, has been developed by scientists.
Using the technique, researchers have for the first time been able to grow a pure, self-renewing population of stem cells specific to the human foregut, the upper section of the human digestive system.
These so-called "Foregut stem cells" could then be developed further to produce liver or pancreatic cells. The method significantly improves on existing techniques for cultivating ...
Soft shells and strange star clusters
2013-10-10
PGC 6240 is an elliptical galaxy that resembles a pale rose in the sky, with hazy shells of stars encircling a very bright centre. Some of these shells are packed close to the centre of the galaxy, while others are flung further out into space. Several wisps of material have been thrown so far that they appear to be almost detached from the galaxy altogether.
Astronomers have studied PGC 6240 in detail due to this structure, and also because of its surrounding globular clusters — dense, tightly packed groups of gravitationally bound stars that orbit galaxies. Over 150 ...
Direct 'writing' of artificial cell membranes on graphene
2013-10-10
Writing in Nature Communications, researchers at The University of Manchester led by Dr Aravind Vijayaraghavan, and Dr Michael Hirtz at the Karlsruhe Institute of Technology (KIT), have demonstrated that membranes can be directly 'written' on to a graphene surface using a technique known as Lipid Dip-Pen Nanolithography (L-DPN).
The human body contains 100 trillion cells, each of which is enveloped in a cell membrane which is essentially a phospholipid bi-layer membrane. These cell membranes have a plethora of proteins, ion channels and other molecules embedded in them, ...
Look out above! Experiment explores innate visual behavior in mice
2013-10-10
When you're a tiny mouse in the wild, spotting aerial predators—like hawks and owls—is essential to your survival. But once you see an owl, how is this visual cue processed into a behavior that helps you to avoid an attack? Using an experimental video technique, researchers at the California Institute of Technology (Caltech) have now developed a simple new stimulus with which they can spur the mouse's escape plans. This new stimulus allows the researchers to narrow down cell types in the retina that could aid in the detection of aerial predators.
"The mouse has recently ...
Super-enhancers seen as 'Rosetta Stone' for dialog between genes and disease
2013-10-10
CAMBRIDGE, Mass. (October 10, 2013) – Having recently discovered a set of powerful gene regulators that control cell identity in a few mouse and human cell types, Whitehead Institute scientists are now showing that these regulators—which they named "super-enhancers"—act across a vast array of human cell types and are enriched in mutated regions of the genome that are closely associated with a broad spectrum of diseases.
The findings, published online today by the journal Cell, suggest that these super-enhancers, first described in Cell several months ago by Whitehead ...