(Press-News.org) Contact information: Jessica Meade
nibibpress@mail.nih.gov
301-496-3500
NIH/National Institute of Biomedical Imaging & Bioengineering
New microscopes at NIH reveal live, developing cells in unprecedented 3-D clarity
Biology moves into the third dimension, may help observe how a brain develops and viruses attack
Researchers at NIH have developed two new microscopes, both the first of their kind. The first captures small, fast moving organisms at an unprecedented rate and the second displays large cell samples in three dimensions while decreasing the amount of harmful light exposure to the cells. Both microscopes surpass in clarity any other currently on the market.
The first microscope allows researchers to obtain fast moving images at double the spatial resolution of a conventional microscope. This provides a vastly clearer picture, enabling cell components that were once quite blurry to now become sharply defined; the difference is similar to that of a 1990's-era standard TV set versus today's high-definition TVs. The microscope is also 10 to 100 times faster than traditional technologies.
"It's always helpful to look at smaller and smaller things," said Hari Shroff, Ph.D., at NIH's National Institute of Biomedical Imaging and Bioengineering (NIBIB) lab chief of NIBIB's section on High Resolution Optical Imaging (HROI.) "Looking at a fixed cell at high resolution can tell you where different parts of the cell are at any given moment; but because much of biology depends on the movement of very small proteins finding each other and interacting, we really needed to look at how things move in a live cell."
The problem is that the higher the resolution, the harder it is to eliminate the blur from both light diffraction (the glow that sometimes occurs as light bends around objects) and the motion going on inside the live cell. Traditional linear structured illumination microscopy (SIM) cannot maintain the high resolution desired by researchers when the sample is moving quickly.
Shroff and his research fellow Andrew York, Ph.D., found an answer to these problems with their new instant linear structured illumination microscopy (iSIM), described in a paper published in Nature Methods on October 6th. Building on traditional SIM technology, the iSIM allows real-time, 3-D super resolution imaging of small, rapidly moving structures—such as individual blood cells moving through a live zebrafish embryo. This kind of imaging is impossible with other microscopes; the ones that are fast enough to record rapid movement do not have a high enough resolution to see inside the cells; and other microscopes with similar resolution are just too slow to capture that amount of motion clearly.
If a photographer wants to take a better photograph, he can either buy a camera with a better lens and higher pixels or he can modify the picture after it's taken, using Photoshop. The principle is similar in microscopy. Instead of approaching the problem by creating better imaging software that helps to increase the resolution after the fact, as most high resolution microscopes do, Shroff and his lab developed a microscope with better lenses and mirrors so that the higher resolution is captured in the original image.
"What we've essentially done is eliminate the need for extensive computer processing by creating a better microscope at every stage of data gathering," said Shroff. "Before, we relied on computer software and algorithms to do things like sort through hundreds of images, eliminate out of focus light, and combine the individual images together. Now, we can do most of that optically with the microscope itself." This means that researchers can skip the time-consuming steps in which computers process the massive amounts of data normally required for such high resolution imaging. Now they will be able to see the images instantly instead of waiting hours or sometimes days, and the data itself takes about 1% of the hard drive space as that produced by previous microscopes.
VIDEO:
Using a new type of microscopy developed in the High Resolution Optical Imaging lab at the National Institute of Biomedical Imaging and Bioengineering, researchers in Hari Shroff's lab are able...
Click here for more information.
The second microscope, described in a paper published in Nature Biotechnology online on October 13, builds on selective plane illumination microscopy (SPIM). Traditional microscopes expose the whole sample to light even though they are only imaging one small section at a time. However, just as the sun can damage skin cells, too much light exposure can damage or even kill biological samples like embryos. SPIM uses a thin beam of light to illuminate only the single plane that is currently being imaged so the biological sample is not damaged by overexposure to light. However, the technology is limited because looking at a 3-D object from only one point of view does not provide a complete representation of the object -- in the same way that viewing a globe from one perspective gives no information about what is on the other side of the world. Traditionally, SPIM microscopes rotate the sample so that they can clearly see all the dimensions, but this severely limits the imaging speed and can increase the damage done to the cells from light exposure because of the many extra images taken at multiple angles. As a result imaging is also slowed down, and the ability to capture much of the fast moving cellular motion is lost.
In order to combat this problem, Shroff and NIBIB staff scientist Yicong, Wu, Ph.D., developed a dual-view SPIM (diSPIM) microscope with two separate detection cameras. The cameras are set at a 90 degree angle to capture perpendicular views of the sample. This perpendicular view results in undistorted 3-dimensional images, and since only two views are acquired, the microscope can still capture events at very high speed. Additionally, with relatively simple modifications, traditional single camera SPIM microscopes can be converted into the dual-camera diSPIM. The real challenge in developing this technology was to find a way to combine the two disparate images from the two cameras, which required the creation of a new post-processing software algorithm.
The increased speed at which the new dual microscope can image the cells allows for clearer images of even very fast moving viruses. Being able to see how a virus enters a cell, and once it's in, how it moves around, could go a long way towards scientists' understanding of how infections occur and potentially how to fight them more effectively. In the same way, observing the migration of cancer cells in a 3-D environment could unlock information on how cancer grows, finds nutrients, and spreads.
"Biology is three-dimensional, not two dimensional. The nucleus of a cell is spherical, not circular, and as scientists, it's up to us to find ways to observe cells as accurately as possible, Shroff said. "We're really moving biology into the third dimension with this microscope." There's a lot of attention right now on how neurons fire and interact with each other, but the truth is, we don't even understand how a brain develops—even in the most simple of organisms like C. elegans, a worm with only 300 brain cells. We don't know why brain cells go where they do or what determines their organization. We can't understand more about this process without observing it, and that's something that these devices can help to provide."
The Shroff lab has already begun multiple collaborations with biological labs both inside the NIH as well as external institutions, including Yale, Sloan Kettering, and the University of Connecticut Health Center.
INFORMATION:
New microscopes at NIH reveal live, developing cells in unprecedented 3-D clarity
Biology moves into the third dimension, may help observe how a brain develops and viruses attack
2013-10-25
ELSE PRESS RELEASES FROM THIS DATE:
Oregon researchers say supplement cuts muscle loss in knee replacements
2013-10-25
Oregon researchers say supplement cuts muscle loss in knee replacements
Package of 8 essential amino acids, taken after physical therapy, also helps to speed recovery
EUGENE, Ore. -- (Oct. 25, 2013) -- Twenty grams of essential amino acids taken twice daily for a week ...
IUPUI physicist collaborates in new study of the cell's 'shredder'
2013-10-25
IUPUI physicist collaborates in new study of the cell's 'shredder'
INDIANAPOLIS -- Steve Pressé, Ph.D., assistant professor of physics in the School of Science at Indiana University-Purdue University Indianapolis, collaborates ...
First gene detected for most common form of mitral valve prolapse
2013-10-25
First gene detected for most common form of mitral valve prolapse
Scientists also found that gene disrupts heart valve development & growth
Research on the DNA of a large multi-generational family has provided a genetic clue that enabled scientists to ...
Study finds that paying people to become kidney donors could be cost-effective
2013-10-25
Study finds that paying people to become kidney donors could be cost-effective
Even a small increase in donors would save money and prolong lives
Washington, DC (October 24, 2013) — A strategy where living kidney donors are paid $10,000, with the assumption that ...
Hands-free ultrasound device with clot-busting drug safe for stroke patients
2013-10-25
Hands-free ultrasound device with clot-busting drug safe for stroke patients
American Heart Association Rapid Access Journal Report
A hands-free ultrasound device combined with a clot-busting drug was safe for ischemic stroke patients in a phase II pilot study, ...
Scientists solve mystery of odd patterns of oxygen in solar system's earliest rocks
2013-10-25
Scientists solve mystery of odd patterns of oxygen in solar system's earliest rocks
Reaction replicates formation of first silicate dust; oxygen isotopes match mix seen in stony meteorites
Cosmochemists have solved a long standing mystery in the formation ...
Increasing toxicity of algal blooms tied to nutrient enrichment and climate change
2013-10-25
Increasing toxicity of algal blooms tied to nutrient enrichment and climate change
CORVALLIS, Ore. – Nutrient enrichment and climate change are posing yet another concern of growing importance: an apparent increase in the toxicity of some algal blooms in freshwater ...
Unique chemistry in hydrogen catalysts
2013-10-25
Unique chemistry in hydrogen catalysts
Making hydrogen easily and cheaply is a dream goal for clean, sustainable energy. Bacteria have been doing exactly that for billions of years, and now chemists at the University of California, Davis, and Stanford University ...
Yeast, human stem cells drive discovery of new Parkinson's disease drug targets
2013-10-25
Yeast, human stem cells drive discovery of new Parkinson's disease drug targets
CAMBRIDGE, Mass. (October 24, 2013) – Using a discovery platform whose components range from yeast cells to human stem cells, Whitehead Institute scientists have identified ...
A thermoelectric materials emulator
2013-10-25
A thermoelectric materials emulator
Behavior of thermoelectric materials simulated
Discovered in the 19th century, thermoelectric materials have the remarkable property that heating them creates a small electrical current. But enhancing this current to a level ...
LAST 30 PRESS RELEASES:
Beyond ChatGPT: WVU researchers to study use and ethics of artificial intelligence across disciplines
Ultrasensitive test detects, serially monitors intact virus levels in patients with COVID-19
mRNA-activated blood clots could cushion the blow of osteoarthritis
Three rockets will ignite Poker Flat’s 2025 launch season
Jared M. Kutzin, DNP, MS, MPH, RN, named President of the Society for Simulation in Healthcare
PET probe images inflammation with high sensitivity and selectivity
Epilepsy patient samples offer unprecedented insights on brain ‘brakes’ linked to disorders
Your stroke risk might be higher if your parents divorced during your childhood
Life satisfaction measurement tool provides robust information across nations, genders, ages, languages
Adult children of divorced parents at higher risk of stroke
Anti-climate action groups tend to arise in countries with stronger climate change efforts
Some coral "walk" towards blue or white light, using rolling, sliding or pulsing movements to migrate, per experiments with free-living mushroom coral Cycloseris cyclolites
Discovery of the significance of birth in the maintenance of quiescent neural stem cells
Severe weather and major power outages increasingly coincide across the US
Bioluminescent cell imaging gets a glow-up
Float like a jellyfish: New coral mobility mechanisms uncovered
Severe weather and major power outages increasingly coincide across the U.S.
Who to vaccinate first? Penn engineers answer a life-or-death question with network theory
Research shows PTSD, anxiety may affect reproductive health of women firefighters
U of M Medical School research team receives $1.2M grant to study Tourette syndrome treatment
In the hunt for new and better enzymes, AI steps to the fore
Females have a 31% higher associated risk of developing long COVID, UT Health San Antonio-led RECOVER study shows
Final synthetic yeast chromosome unlocks new era in biotechnology
AI-powered prediction model enhances blood transfusion decision-making in ICU patients
MD Anderson Research Highlights for January 22, 2025
Scholastica announces integration with Crossmark by Crossref to expand its research integrity support
Could brain aging be mom’s fault? The X chromosome factor
Subterranean ‘islands’: strongholds in a potentially less turbulent world
Complete recombination map of the human-genome, a major step in genetics
Fighting experience plays key role in brain chemical’s control of male aggression
[Press-News.org] New microscopes at NIH reveal live, developing cells in unprecedented 3-D clarityBiology moves into the third dimension, may help observe how a brain develops and viruses attack