(Press-News.org) Contact information: Michael Baum
michael.baum@nist.gov
301-975-2763
National Institute of Standards and Technology (NIST)
Perfect faults: A self-correcting crystal may unleash the next generation of advanced communications
Researchers from the National Institute of Standards and Technology (NIST) have joined with an international team to engineer and measure a potentially important new class of nanostructured materials for microwave and advanced communication devices. Based on NIST's measurements, the new materials—a family of multilayered crystalline sandwiches—might enable a whole new class of compact, high-performance, high-efficiency components for devices such as cellular phones.*
"These materials are an excellent example of what the Materials Genome Initiative refers to as 'materials-by-design'," says NIST physicist James Booth, one of the lead researchers. "Materials science is getting better and better at engineering complex structures at an atomic scale to create materials with previously unheard-of properties."
The new multilayer crystals are so-called "tunable dielectrics," the heart of electronic devices that, for example, enable cell phones to tune to a precise frequency, picking a unique signal out of the welter of possible ones.
Tunable dielectrics that work well in the microwave range and beyond—modern communications applications typically use frequencies around a few gigahertz—have been hard to make, according to NIST materials scientist Nathan Orloff. "People have created tunable microwave dielectrics for decades, but they've always used up way too much power." These new materials work well up to 100 GHz, opening the door for the next generation of devices for advanced communications.
Modern cellphone dielectrics use materials that suffer from misplaced or missing atoms called "defects" within their crystal structure, which interfere with the dielectric properties and lead to power loss. One major feature of the new materials, says Orloff, is that they self-correct, reducing the effect of defects in the part of the crystal where it counts. "We refer to this material as having 'perfect faults'," he says. "When it's being grown, one portion accommodates defects without affecting the good parts of the crystal. It's able to correct itself and create perfect dielectric bricks that result in the rare combination of high tuning and low loss."
The new material has layers of strontium oxide, believed to be responsible for the self-correcting feature, separating a variable number of layers of strontium titanate. Strontium titanate on its own is normally a pretty stable dielectric—not really tunable at all—but another bit of nanostructure wizardry solves that. The sandwich layers are grown as a thin crystalline film on top of a substrate material with a mismatched crystal spacing that produces strain within the strontium titanate structure that makes it a less stable dielectric—but one that can be tuned. "It's like putting a queen-sized sheet on a king-sized bed," says Orloff. "The combination of strain with defect control leads to the unique electronic properties."
One key discovery by the research team was that, in addition to adding strain to the crystal sandwich, adding additional layers of strontium titanate in between the strontium oxide layers increased the room-temperature "tunability" performance of the structure, providing a new mechanism to control the material response. The material they reported on recently in the journal Nature has six layers of strontium titanate between each strontium oxide layer.
The new sandwich material performs so well as a tunable dielectric, over such a broad range of frequencies, that the NIST team led by Booth had to develop a new measurement technique—an array of test structures fabricated on top of the test film—just to measure its electronic characteristics. "We were able to characterize the performance of these materials as a function of frequency running from 10 hertz all the way up to 125 gigahertz. That's the equivalent of measuring wavelengths from kilometers down to microns all with the same experimental set-up," says Orloff, adding, "This material has a much lower loss and a much higher tunability for a given applied field then any material that we have seen."
INFORMATION:
An international team of researchers contributed to the recent paper, representing, in addition to NIST, Cornell University, the University of Maryland, Pennsylvania State University, the Institute of Physics ASCR (Czech Republic), Universitat Politècnica de Catalunya (Spain), the Kavli Institute at Cornell for Nanoscale Science, Oak Ridge National Laboratory, the Leibniz Institute for Crystal Growth (Germany), The University of Texas at Austin and Temple University.
For additional perspective, see the Cornell University news story, "Tunable antenna could end dropped cell phone calls" at http://www.news.cornell.edu/stories/2013/10/tunable-antenna-could-end-dropped-cell-phone-calls. For more on the MGI at NIST, see http://www.nist.gov/mgi/index.cfm.
*C-H Lee, N.D. Orloff, T. Birol, Y. Zhu, V. Goian, E. Rocas, R. Haislmaier, E. Vlahos, J.A. Mundy, L.F. Kourkoutis, Y. Nie, M.D. Biegalski, J. Zhang, M. Bernhagen, N.A. Benedek, Y. Kim, J.D. Brock, R.Uecker, X.X. Xi, V. Gopalan, D. Nuzhnyy, S. Kamba, D.A. Muller, I. Takeuchi, J.C. Booth, C.J. Fennie and D.G. Schlom. Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics. Nature, 502, 532, Oct. 24, 2013. doi:10.1038/nature12582.
Perfect faults: A self-correcting crystal may unleash the next generation of advanced communications
2013-11-06
ELSE PRESS RELEASES FROM THIS DATE:
Recent National Science Foundation study reveals increase in state government expenditures for research and development
2013-11-06
Recent National Science Foundation study reveals increase in state government expenditures for research and development
According to a recent study published by the National Science Foundation (NSF), state government agency expenditures for research and development ...
Updating building energy codes: How much can your state save?
2013-11-06
Updating building energy codes: How much can your state save?
How much in energy and cost savings would your state realize if it updated its commercial building energy codes? You can find out in a new on-line publication* from the National ...
Not just a pretty face: Bodies provide important cues for recognizing people
2013-11-06
Not just a pretty face: Bodies provide important cues for recognizing people
Computer recognition of people has focused almost exclusively on faces, but a new study suggests it may be time to take additional information into consideration. ...
Postoperative pain may increase risk of temporary problems with learning, memory
2013-11-06
Postoperative pain may increase risk of temporary problems with learning, memory
The pain caused by a surgical incision may contribute to the risk of postoperative cognitive dysfunction, a sometimes transient impairment in learning and memory that affects ...
3-dimensional carbon goes metallic
2013-11-06
3-dimensional carbon goes metallic
New metallic structure may be stable at ambient temperature and pressure with potential applications in science and technology
A theoretical, three-dimensional (3D) form of carbon that is metallic under ambient temperature ...
Clean Air Act has led to improved water quality in the Chesapeake Bay watershed
2013-11-06
Clean Air Act has led to improved water quality in the Chesapeake Bay watershed
Declines in atmospheric nitrogen pollution improved water quality over a 23-year period
FROSTBURG, MD (November 6, 2013) – A new study shows that the ...
Research reveals possible cause of diabetic cardiomyopathy
2013-11-06
Research reveals possible cause of diabetic cardiomyopathy
Findings could help lead to prevention and treatment of heart failure in diabetics
Researchers from the University of Texas Medical Branch at Galveston have discovered one of the ...
'Don't get sick in July'
2013-11-06
'Don't get sick in July'
Real dangers for high-risk patients when trainees take on new roles
With almost no experience, newly graduated medical students enter teaching hospitals around the country every July, beginning their careers as interns. At the same ...
Osteoarthritis medicine delivered on-demand
2013-11-06
Osteoarthritis medicine delivered on-demand
Scientists are reporting development of a squishy gel that when compressed — like at a painful knee joint — releases anti-inflammatory medicine. The new material could someday deliver medications when and where osteoarthritis ...
Educational video games can boost motivation to learn, NYU, CUNY study shows
2013-11-06
Educational video games can boost motivation to learn, NYU, CUNY study shows
Math video games can enhance students' motivation to learn, but it may depend on how students play, researchers at New York University and the City University of New York have found in a study ...