PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

UCSF scientist asks, did inefficient cellular machinery evolve to fight viruses and jumping genes?

2013-11-07
(Press-News.org) Contact information: Jeffrey Norris
jeffrey.norris@ucsf.edu
415-502-6397
University of California - San Francisco
UCSF scientist asks, did inefficient cellular machinery evolve to fight viruses and jumping genes? It might seem obvious that humans are elegant and sophisticated beings in comparison to lowly bacteria, but when it comes to genes, a UC San Francisco scientist wants to turn conventional wisdom about human and bacterial evolution on its head.

Far from being sleekly performing and fine-tuned athletes, the molecules guiding the activity of our genes are like sour bureaucrats that clog up the works and create unnecessary inefficiency, asserts Hiten Madhani, MD, PhD, a professor of biochemistry and biophysics at UCSF. In contrast, bacteria carry out these processes efficiently with less frustration for the gene to express itself.

Madhani presented his viewpoint in an essay entitled "The Frustrated Gene: Origins of Eukaryotic Gene Expression," published online November 7, 2013 in the journal Cell.

Although his thinking was stimulated by his own research findings, Madhani described his Cell essay as a "just so" story, a conjecture that challenges conventional thinking, but that so far is without data to back it up. He paraphrased a source of inspiration, the renowned scientist Sydney Brenner, who won a Nobel Prize for his own studies of gene regulation. "Biology is awash in a sea of data, but it needs new theories," Madhani said.

Most scientists believe that the complexity of the molecular mechanisms that guide the expression of genes and the production of proteins within a human cell is needed to allow for flexible responses that drive the development and maintenance of multifaceted organism, Madhani said.

But he proposes that this complexity in genetic regulatory machinery did not originally evolve to allow for the development of the whole human. Instead, he suggested, complexity in gene expression might have first evolved in early eukaryotes to thwart infection by "parasitic DNA," such as retroviruses, that would otherwise invade the cell nucleus and disrupt normal genes.

In contrast to humans, bacteria control their genes and have adaptively evolved in myriad ways without complex mechanisms like those that guide human gene expression. In fact, humans, whose cells number in the many trillions, and disease-causing bacteria, which are but a single cell, have been doing battle and evolving together for ages, with multidrug-resistant bacteria perhaps being latest type of villain to emerge in this epic struggle.

Bacteria have persisted despite their simplicity. They have only one gene-bearing chromosome and lack any kind of cell nucleus. The bacterial chromosome itself lacks the modifiable, protective sheath known as chromatin. Many other details of gene expression differ between human and bacterial cells. Bacteria are known as "prokaryotes," a name that refers to the fact that they arose before cells evolved that had a nucleus — more than 3 billion years ago, according to some estimates made from fossils. Human cells have a nucleus and numerous other features that peg them as "eukaryotes."

While humans evolved from apes just a few million years ago, eukaryotes have been around since the ancestors of single-celled yeast arose, perhaps 1.5 billion years ago — with the same complex features, Madhani said.

"It might be tempting to think that the complex attributes of human gene expression evolved to drive the evolution of complex, multicellular organisms," Madhani said, "But the core elements of eukaryotic gene expression were established within the ancient unicellular progenitor of modern eukaryotes." In other words, the early eukaryotic cell already was adapting to ward off parasitic DNA, he suggested.

Madhani said his idea stems from research he published earlier this year. His research group discovered that a eukaryotic cellular machine known as SCANR plays a previously unrecognized role in thwarting corruption of the genome by parasitic DNA.

SCANR guards against DNA called jumping genes, or transposons, which long ago invaded the human genome. Transposons replicate multiple times, and insert themselves at random places within genomic DNA. When transposons insert themselves in the middle of an important gene, they may cause malfunction, disease or birth defects.

Madhani began thinking about how other mechanisms in the cell might similarly stymie certain viruses, which unlike bacterial pathogens, depend on the genetic machinery of their human hosts in order to replicate.

"Transposable elements attack from within the genome, and viruses attack from outside," Madhani said.

In addition to the chromatin that restricts access to DNA, eukaryotic cells also have embellishments to their RNA, and molecular inspectors that check to see that these eukaryotic modifications are present before protein production proceeds. The nucleus itself is gated to allow only certain molecules to get in and out. Many other eukaryotic cellular phenomena might have first evolved to defend against viruses and transposable elements, Madhani said.

### UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes top-ranked graduate schools of dentistry, medicine, nursing and pharmacy, a graduate division with nationally renowned programs in basic biomedical, translational and population sciences, as well as a preeminent biomedical research enterprise and two top-ranked hospitals, UCSF Medical Center and UCSF Benioff Children's Hospital.

Follow UCSF UCSF.edu | Facebook.com/ucsf | Twitter.com/ucsf | YouTube.com/ucsf


ELSE PRESS RELEASES FROM THIS DATE:

Changes to fisheries legislation have removed habitat protection for most fish species in Canada

2013-11-07
Changes to fisheries legislation have removed habitat protection for most fish species in Canada University of Calgary and Dalhousie University fisheries biologists say federal Fisheries Act revisions were unscientific Federal government changes to Canada's ...

Tree nut consumption associated with reduced risk of pancreatic cancer in women

2013-11-07
Tree nut consumption associated with reduced risk of pancreatic cancer in women First prospective study to date on nut consumption and pancreatic cancer in the Bristish Journal of Cancer Davis, CA, November 7, 2013 – In a large prospective study published online ...

Getting to grips with seizure prediction

2013-11-07
Getting to grips with seizure prediction A device that could predict when a person with epilepsy might next have a seizure is one step closer to reality thanks to the development of software by researchers in the USA. Details are to be published in a forthcoming issue of the ...

Programmed nanoparticles organize themselves into highly complex nanostructures

2013-11-07
Programmed nanoparticles organize themselves into highly complex nanostructures New principle for the self-assembly of patterned nanoparticles published in NATURE may have important implications for nanotechnology and future technologies Animal ...

Hartz IV reform did not reduce unemployment in Germany

2013-11-07
Hartz IV reform did not reduce unemployment in Germany Impact of the Hartz IV reform on curbing unemployment in Germany proved to be exceptionally low The Hartz IV reform of the German labor market has been one of the most controversial ...

New study shows trustworthy people are perceived to look similar to ourselves

2013-11-07
New study shows trustworthy people are perceived to look similar to ourselves When a person is deemed trustworthy, we perceive that person's face to be more similar to our own, according to a new study published in Psychological Science. A team of scientists ...

Why stem cells need to stick with their friends

2013-11-07
Why stem cells need to stick with their friends Scientists at University of Copenhagen and University of Edinburgh have identified a core set of functionally relevant factors which regulates embryonic stem cells' ability for self-renewal. A key aspect ...

Nanoparticles can overcome drug resistance in breast cancer cells

2013-11-07
Nanoparticles can overcome drug resistance in breast cancer cells Nanoparticles filled with chemotherapeutic drugs can kill drug-resistant breast cancer cells, according to a study published in the scientific journal Biomaterials. Nanoparticles are just as small, ...

Research shows that the more chocolate you eat, the lower your body fat level is

2013-11-07
Research shows that the more chocolate you eat, the lower your body fat level is University of Granada researchers from the Faculty of Medicine and the Faculty of Physical Activity and Sports Sciences have scientifically disproven the old belief ...

Clotting protein hardens aging hearts

2013-11-07
Clotting protein hardens aging hearts Rice U. researchers link von Willebrand factor to heart-valve calcium deposits Heart valves calcify over time, and Rice University scientists are beginning to understand why. The Rice lab of bioengineer Jane Grande-Allen found through studies ...

LAST 30 PRESS RELEASES:

Oldest modern shark mega-predator swam off Australia during the age of dinosaurs

Scientists unveil mechanism behind greener ammonia production

Sharper, straighter, stiffer, stronger: Male green hermit hummingbirds have bills evolved for fighting

Nationwide awards honor local students and school leaders championing heart, brain health

Epigenetic changes regulate gene expression, but what regulates epigenetics?

Nasal drops fight brain tumors noninvasively

Okayama University of Science Ranked in the “THE World University Rankings 2026” for the Second Consecutive Year

New study looks at (rainforest) tea leaves to predict fate of tropical forests

When trade routes shift, so do clouds: Florida State University researchers uncover ripple effects of new global shipping regulations

Kennesaw State assistant professor receives grant to improve shelf life of peptide- and protein-based drugs

Current heart attack screening tools are not optimal and fail to identify half the people who are at risk

LJI scientists discover how T cells transform to defend our organs

Brain circuit controlling compulsive behavior mapped

Atoms passing through walls: Quantum tunneling of hydrogen within palladium crystal

Observing quantum footballs blown up by laser kicks

Immune cells ‘caught in the act’ could spur earlier detection and prevention of Type 1 Diabetes

New membrane sets record for separating hydrogen from CO2

Recharging the powerhouse of the cell

University of Minnesota research finds reducing inflammation may protect against early AMD-like vision loss

A mulching film that protects plants without pesticides or plastics

New study highlights key findings on lung cancer surveillance rates

Uniform reference system for lightweight construction methods

Improve diet and increase physical activity at the same time to limit weight gain, study suggests

A surprising insight may put a charge into faster muscle injury repair

Scientists uncover how COVID-19 variants outsmart the immune system

Some children’s tantrums can be seen in the brain, new study finds

Development of 1-Wh-class stacked lithium-air cells

UVA, military researchers seek better ways to identify, treat blast-related brain injuries

AMS Science Preview: Railways and cyclones; pinned clouds; weather warnings in wartime

Scientists identify a molecular switch to a painful side effect of chemotherapy

[Press-News.org] UCSF scientist asks, did inefficient cellular machinery evolve to fight viruses and jumping genes?