PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

An inside look at a MOF in action

Berkeley Lab researchers probe into electronic structure of MOF may lead to improved capturing of greenhouse gases

2013-11-22
(Press-News.org) Contact information: Lynn Yarris
lcyarris@lbl.gov
510-486-5375
DOE/Lawrence Berkeley National Laboratory
An inside look at a MOF in action Berkeley Lab researchers probe into electronic structure of MOF may lead to improved capturing of greenhouse gases

A unique inside look at the electronic structure of a highly touted metal-organic framework (MOF) as it is adsorbing carbon dioxide gas should help in the design of new and improved MOFs for carbon capture and storage. Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have recorded the first in situ electronic structure observations of the adsorption of carbon dioxide inside Mg-MOF-74, an open metal site MOF that has emerged as one of the most promising strategies for capturing and storing greenhouse gases.

Working at Berkeley Lab's Advanced Light Source (ALS), a team led by Jeff Kortright of Berkeley Lab's Materials Sciences Division, used the X-ray spectroscopy technique known as Near Edge X-ray Absorption Fine Structure (NEXAFS) to obtain what are believed to be the first ever measurements of chemical and electronic signatures inside of a MOF during gas adsorption.

"We've demonstrated that NEXAFS spectroscopy is an effective tool for the study of MOFs and gas adsorption," Kortright says. "Our study shows that open metal site MOFs have significant X-ray spectral signatures that are highly sensitive to the adsorption of carbon dioxide and other molecules."

Kortright is the corresponding author of a paper describing these results in the Journal of the American Chemical Society (JACS). The paper is titled "Probing Adsorption Interactions In Metal-Organic Frameworks Using X-ray Spectroscopy." Co-authors are Walter Drisdell, Roberta Poloni, Thomas McDonald, Jeffrey Long, Berend Smit, Jeffrey Neaton and David Prendergast.

Carbon dioxide gas released during the burning of coal is one of the primary greenhouse gases responsible for exacerbating global climate change. However, with the world's largest estimated recoverable reserves of coal, the United States will continue to rely on coal-burning power plants to generate electricity for the foreseeable future. This presents a pressing need to develop effective and economical means of removing carbon dioxide from flues before it enters the atmosphere.

MOFs are molecular systems consisting of a metal oxide center surrounded by organic "linker" molecules that form a highly porous three-dimensional crystal framework. This microporous crystal structure enables MOFs to serve as storage vessels with a sponge-like capacity for capturing and containing greenhouse gases. When a solvent molecule applied during the formation of the MOF is subsequently removed, the result is an unsaturated "open" metal site MOF that has a strong affinity for carbon dioxide.

"Open metal site MOFs preferentially adsorb carbon dioxide over nitrogen or methane due to carbon dioxide's larger quadrupole moment and greater polarizability," Kortright says. "Mg-MOF-74 with its unique pyramidal geometry is especially selective for carbon dioxide over other greenhouse gases and has an exceptionally large storage capacity."

To examine adsorption in Mg-MOF-74, lead author Drisdell, a post-doc in Kortright's research group, designed a special gas cell that enabled NEXAFS measurements to be made as carbon dioxide pressure was varied from vacuum up to 100 Torr at ambient temperature. This capability provided the means to make direct comparisons between empty and bound sites of the same Mg-MOF-74 sample. NEXAFS measurements were made at ALS beamline 6.3.1, a bending magnet beamline optimized for X-ray absorption spectroscopy.

"NEXAFS spectroscopy is an element-specific technique, probing the unoccupied electronic states associated with the excited atom," Drisdell says. "NEXAFS measurements allow us to determine how the electronic interactions differ for different adsorbed species and for binding sites in a larger framework.

For systems with specific chemically distinct binding sites, such as the magnesium sites in Mg-MOF-74, NEXAFS spectra provide high sensitivity to changes in the local electronic structure and coordination at the binding sites upon adsorption of gas molecules."

First principles calculations were performed in collaboration with co-author Prendergast, a nanostructures theorist also with Berkeley Lab's Materials Sciences Division, to provide a theoretical model as to what should happen inside Mg-MOF-74 during adsorption of carbon dioxide.

"The calculations were a great aid in interpreting our spectra," Drisdell says. "Not only could we reproduce the spectral signatures we observed upon adsorption, but we could show that these signatures arise from a specific, distorted electronic state at the open metal sites that displays a unique interaction with different adsorbed molecules."

With their results having established NEXAFS spectroscopy as an effective experimental tool for the study of MOFs and gas adsorption, Kortright expects to see many more studies of fundamental adsorption interactions inside of MOFs.

"Regarding open metal site MOFs, similar studies in which the metal species are transition metals will be interesting, as will systematic studies of different metal sites in the same MOF structure," he says. "Such studies should provide fundamental insights and help explain why some MOFs work better than others. This, in turn, should help us to predict which are the best metals to consider as MOF design evolves."

In addition to the ALS, Kortright, Drisdell and their colleagues also called upon the resources of the National Energy Research Scientific Computing Center (NERSC)'s "Lawrencium" supercomputer and the Molecular Foundry computing clusters "Nano" and "Vulcan" for the first principles calculations. Like the ALS, NERSC and the Molecular Foundry are DOE national user facilities hosted by Berkeley Lab.

"This study is an excellent example of a collaborative team of scientists from different areas working to complete a project that none could have done in isolation," Kortright says.



INFORMATION:



Support for this work was provided by the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center funded by the DOE Office of Science.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.



ELSE PRESS RELEASES FROM THIS DATE:

Extra-Tropical Storm Melissa spinning into history

2013-11-22
Extra-Tropical Storm Melissa spinning into history The National Hurricane Center issued their final advisory on Extra-Tropical Storm Melissa as it spins toward to Azores Islands and weakens. The final advisory on Melissa was issued on November 22 at 0300 UTC, ...

Certain measures can help predict older dialysis patients' prognoses

2013-11-22
Certain measures can help predict older dialysis patients' prognoses Patients receiving high intensity care when dialysis is initiated have shorter survival times and eventually need more intensive procedures Adults age 65 years and older represent half of the patients ...

IceCube pushes neutrinos to the forefront of astronomy

2013-11-22
IceCube pushes neutrinos to the forefront of astronomy MADISON, Wis. – The IceCube Neutrino Observatory, a particle detector buried in the Antarctic ice, is a demonstration of the power of the human passion for discovery, where scientific ...

2 Y genes can replace the entire Y chromosome for assisted reproduction in mice

2013-11-22
2 Y genes can replace the entire Y chromosome for assisted reproduction in mice The Y chromosome is a symbol of maleness, present only in males and encoding genes important for male reproduction. But live mouse offspring can be generated with assisted reproduction ...

Monster gamma-ray burst in our cosmic neighborhood

2013-11-22
Monster gamma-ray burst in our cosmic neighborhood Gamma-ray bursts are violent bursts of gamma radiation associated with exploding massive stars. For the first time ever, researchers from the Niels Bohr Institute, among others, have observed ...

'The era of neutrino astronomy has begun'

2013-11-22
'The era of neutrino astronomy has begun' In a first, IceCube observatory at the South Pole tracks cosmic neutrinos COLLEGE PARK, MD – Astrophysicists using a telescope embedded in Antarctic ice have succeeded in a quest to detect and record the mysterious phenomena known ...

Study of fluke parasites identifies drug resistance mutations; raises hope for new therapies

2013-11-22
Study of fluke parasites identifies drug resistance mutations; raises hope for new therapies An international group of scientists led by Tim Anderson Ph.D., at the Texas Biomedical Research Institute and Philip LoVerde Ph.D., at the University of Texas ...

IceCube detects first high-energy neutrinos from the cosmos

2013-11-22
IceCube detects first high-energy neutrinos from the cosmos World's largest particle detector opens up a new branch of astronomy This news release is available in German. Within the eternal ice of Antarctica, scientists have observed the first ...

Discovery could usher in new ice age of astrophysics

2013-11-22
Discovery could usher in new ice age of astrophysics (Edmonton) Scientists using a particle detector made of ice at the South Pole have found the first indication of high-energy neutrinos that originate outside of the solar system. "This is a huge result. It ...

Improve learning by taming instructional complexity

2013-11-22
Improve learning by taming instructional complexity Carnegie Mellon and Temple researchers offer fresh perspective for educational research VIDEO: From using concrete or ...

LAST 30 PRESS RELEASES:

Mega-iceberg from Antarctica on collision course with South Georgia: harbinger of things to come?

Beneath the bog: FAU awarded $1.3 million to track carbon and gas flow in peatlands

ETRI to collaborate on semiconductor technology with US Argonne National Laboratory

Unexpected discoveries in study of giraffe gut flora

Not all heart inflammation is the same

New home-based intervention could reduce emergency hospital admissions for older people

Can exercise help colon cancer survivors live as long as matched individuals in the general population?

Unlicensed retailers provide youths with easy access to cannabis in New York City

Scientists track evolution of pumice rafts after 2021 underwater eruption in Japan

The future of geothermal for reliable clean energy

Study shows end-of-life cancer care lacking for Medicare patients

Scented wax melts may not be as safe for indoor air as initially thought, study finds

Underwater mics and machine learning aid right whale conservation

Solving the case of the missing platinum

Glass fertilizer beads could be a sustained nutrient delivery system

Biobased lignin gels offer sustainable alternative for hair conditioning

Perovskite solar cells: Thermal stresses are the key to long-term stability

University of Houston professors named senior members of the National Academy of Inventors

Unraveling the mystery of the missing blue whale calves

UTA partnership boosts biomanufacturing in North Texas

Kennesaw State researcher earns American Heart Association award for innovative study on heart disease diagnostics

Self-imaging of structured light in new dimensions

Study highlights successes of Virginia’s oyster restoration efforts

Optimism can encourage healthy habits

Precision therapy with microbubbles

LLM-based web application scanner recognizes tasks and workflows

Pattern of compounds in blood may indicate severity of gestational hypertension and preeclampsia

How does innovation policy respond to the challenges of a changing world?

What happens when a diet targets ultra-processed foods?

University of Vaasa, Finland, conducts research on utilizing buildings as energy sources

[Press-News.org] An inside look at a MOF in action
Berkeley Lab researchers probe into electronic structure of MOF may lead to improved capturing of greenhouse gases