PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Researchers unlock a new means of growing intestinal stem cells

Studying these cells could lead to new treatments for diseases ranging from gastrointestinal disease to diabetes

2013-12-02
(Press-News.org) Contact information: Sarah McDonnell
s_mcd@mit.edu
617-253-8923
Massachusetts Institute of Technology
Researchers unlock a new means of growing intestinal stem cells Studying these cells could lead to new treatments for diseases ranging from gastrointestinal disease to diabetes CAMBRIDGE, MA -- Researchers at MIT and Brigham and Women's Hospital have shown that they can grow unlimited quantities of intestinal stem cells, then stimulate them to develop into nearly pure populations of different types of mature intestinal cells. Using these cells, scientists could develop and test new drugs to treat diseases such as ulcerative colitis.

The small intestine, like most other body tissues, has a small store of immature adult stem cells that can differentiate into more mature, specialized cell types. Until now, there has been no good way to grow large numbers of these stem cells, because they only remain immature while in contact with a type of supportive cells called Paneth cells.

In a new study appearing in the Dec. 1 online edition of Nature Methods, the researchers found a way to replace Paneth cells with two small molecules that maintain stem cells and promote their proliferation. Stem cells grown in a lab dish containing these molecules can stay immature indefinitely; by adding other molecules, including inhibitors and activators, the researchers can control what types of cells they eventually become.

"This opens the door to doing all kinds of things, ranging from someday engineering a new gut for patients with intestinal diseases to doing drug screening for safety and efficacy. It's really the first time this has been done," says Robert Langer, the David H. Koch Institute Professor, a member of MIT's Koch Institute for Integrative Cancer Research, and one of the paper's senior authors.

Jeffrey Karp, an associate professor of medicine at Harvard Medical School and Brigham and Women's Hospital, is also a senior author of the paper. The paper's lead author is Xiaolei Yin, a postdoc at the Koch Institute and Brigham and Women's Hospital.

From one cell, many

The inner layer of the intestines has several critical functions. Some cells are specialized to absorb nutrients from digested food, while others form a barrier that secretes mucus and prevents viruses and bacteria from entering cells. Still others alert the immune system when a foreign pathogen is present.

This layer, known as the intestinal epithelium, is coated with many small indentations known as crypts. At the bottom of each crypt is a small pool of epithelial stem cells, which constantly replenish the specialized cells of the intestinal epithelium, which only live for about five days. These stem cells can become any type of intestinal epithelial cell, but don't have the pluripotency of embryonic stem cells, which can become any cell type in the body.

If scientists could obtain large quantities of intestinal epithelial stem cells, they could be used to help treat gastrointestinal disorders that damage the epithelial layer. Recent studies in animals have shown that intestinal stem cells delivered to the gut can attach to ulcers and help regenerate healthy tissue, offering a potential new way to treat ulcerative colitis.

Using those stem cells to produce large populations of specialized cells would also be useful for drug development and testing, the researchers say. With large quantities of goblet cells, which help control the immune response to proteins found in food, scientists could study food allergies; with enteroendocrine cells, which release hunger hormones, they could test new treatments for obesity.

"If we had ways of performing high-throughput screens on large numbers of these very specific cell types, we could potentially identify new targets and develop completely new drugs for diseases ranging from inflammatory bowel disease to diabetes," Karp says.

Controlling cell fate

In 2007, Hans Clevers, a professor at the Hubrecht Institute in the Netherlands, identified a marker for intestinal epithelial stem cells — a protein called Lgr5. Clevers, who is an author of the new Nature Methods paper, also identified growth factors that enable these stem cells to reproduce in small quantities in a lab dish and spontaneously differentiate into mature cells, forming small structures called organoids that mimic the natural architecture of the intestinal lining.

In the new study, the researchers wanted to figure out how to keep stem cells proliferating but stop them from differentiating, creating a nearly pure population of stem cells. This has been difficult to do because stem cells start to differentiate as soon as they lose contact with a Paneth cell.

Paneth cells control two signaling pathways, known as Notch and Wnt, which coordinate cell proliferation, especially during embryonic development. The researchers identified two small molecules, valproic acid and CHIR-99021, that work together to induce stem cells to proliferate and prevent them from differentiating into mature cells.

When the researchers grew mouse intestinal stem cells in a dish containing these two small molecules, they obtained large clusters made of 70 to 90 percent stem cells.

Once the researchers had nearly pure populations of stem cells, they showed that they could drive them to develop into particular types of intestinal cells by adding other factors that influence the Wnt and Notch pathways. "We used different combinations of inhibitors and activators to drive stem cells to differentiate into specific populations of mature cells," Yin says.

This approach also works in mouse stomach and colon cells, the researchers found. They also showed that the small molecules improved the proliferation of human intestinal stem cells. They are now working on engineering intestinal tissues for patient transplant and developing new ways to rapidly test the effects of drugs on intestinal cells. ### The research was funded by the National Institutes of Health, a Harvard Institute of Translational Immunology/Helmsley Trust Pilot Grant in Crohn's Disease, and the European Molecular Biology Organization.

Written by Anne Trafton, MIT News Office


ELSE PRESS RELEASES FROM THIS DATE:

Mice can inherit learned sensitivity to a smell

2013-12-02
Mice can inherit learned sensitivity to a smell Trauma can scar people so indelibly that their children are affected. History provides examples of generations traumatized by war and starvation, whose children experience altered physiology. Now researchers at Yerkes ...

Forget the needle consider the haystack

2013-12-02
Forget the needle consider the haystack Uncovering hidden structures in massive data collections Advances in computer storage have created collections of data so huge that researchers often have trouble uncovering critical patterns in connections ...

Living with chronic pain: The daily struggle with a 'new self'

2013-12-02
Living with chronic pain: The daily struggle with a 'new self' People who suffer with chronic musculoskeletal pain face a daily struggle with their sense of self and find it difficult to prove the legitimacy of their condition. A new study, funded by the National Institute ...

Oxygen levels increase and decrease the effectiveness of anti-inflammatory therapies

2013-12-02
Oxygen levels increase and decrease the effectiveness of anti-inflammatory therapies New research published in the Journal of Leukocyte Biology suggests that the effectiveness of anti-inflammatory glucocorticoids may be related to ...

Understanding hearing

2013-12-02
Understanding hearing Computer models of neuronal sound processing in the brain lead to cochlear implant improvements This news release is available in German. Intact hearing is a prerequisite for learning to speak. This is why children ...

Newly discovered human peptide may become a new treatment for diabetes

2013-12-02
Newly discovered human peptide may become a new treatment for diabetes New research in The FASEB Journal suggests that humanin, a peptide produced by the human body, increases the metabolism of glucose in beta cells, which in turn ...

Salk scientists crack riddle of important drug target

2013-12-02
Salk scientists crack riddle of important drug target New method for determining structure of key cellular receptors could speed drug development LA JOLLA, CA---- A new approach to mapping how proteins interact with each other, developed at the Salk Institute for Biological Studies, ...

Difficult dance steps: Team learns how membrane transporter moves

2013-12-02
Difficult dance steps: Team learns how membrane transporter moves CHAMPAIGN, Ill. — Researchers have tried for decades to understand the undulations and gyrations that allow transport proteins to shuttle molecules from one side of a cell membrane ...

Head out to the ski slopes, for happiness' sake

2013-12-02
Head out to the ski slopes, for happiness' sake Study says even 1-off skiing trips can give you a valuable boost in pleasure and well-being Are you contemplating a skiing holiday? The all-out pleasure and enjoyment you experience on a pair of skis or a snowboard is positively ...

Process holds promise for production of synthetic gasoline

2013-12-02
Process holds promise for production of synthetic gasoline A chemical system developed by researchers at the University of Illinois at Chicago can efficiently perform the first step in the process of creating syngas, gasoline and other energy-rich products ...

LAST 30 PRESS RELEASES:

The puberty talk: Parents split on right age to talk about body changes with kids

Tusi (a mixture of ketamine and other drugs) is on the rise among NYC nightclub attendees

Father’s mental health can impact children for years

Scientists can tell healthy and cancerous cells apart by how they move

Male athletes need higher BMI to define overweight or obesity

How thoughts influence what the eyes see

Unlocking the genetic basis of adaptive evolution: study reveals complex chromosomal rearrangements in a stick insect

Research Spotlight: Using artificial intelligence to reveal the neural dynamics of human conversation

Could opioid laws help curb domestic violence? New USF research says yes

NPS Applied Math Professor Wei Kang named 2025 SIAM Fellow

Scientists identify agent of transformation in protein blobs that morph from liquid to solid

Throwing a ‘spanner in the works’ of our cells’ machinery could help fight cancer, fatty liver disease… and hair loss

Research identifies key enzyme target to fight deadly brain cancers

New study unveils volcanic history and clues to ancient life on Mars

Monell Center study identifies GLP-1 therapies as a possible treatment for rare genetic disorder Bardet-Biedl syndrome

Scientists probe the mystery of Titan’s missing deltas

Q&A: What makes an ‘accidental dictator’ in the workplace?

Lehigh University water scientist Arup K. SenGupta honored with ASCE Freese Award and Lecture

Study highlights gaps in firearm suicide prevention among women

People with medical debt five times more likely to not receive mental health care treatment

Hydronidone for the treatment of liver fibrosis associated with chronic hepatitis B

Rise in claim denial rates for cancer-related advanced genetic testing

Legalizing youth-friendly cannabis edibles and extracts and adolescent cannabis use

Medical debt and forgone mental health care due to cost among adults

Colder temperatures increase gastroenteritis risk in Rohingya refugee camps

Acyclovir-induced nephrotoxicity: Protective potential of N-acetylcysteine

Inhibition of cyclooxygenase-2 upregulates the nuclear factor erythroid 2-related factor 2 signaling pathway to mitigate hepatocyte ferroptosis in chronic liver injury

AERA announces winners of the 2025 Palmer O. Johnson Memorial Award

Mapping minds: The neural fingerprint of team flow dynamics

Patients support AI as radiologist backup in screening mammography

[Press-News.org] Researchers unlock a new means of growing intestinal stem cells
Studying these cells could lead to new treatments for diseases ranging from gastrointestinal disease to diabetes