(Press-News.org) Washington, D.C. (November 9, 2010) -- Current medical techniques for monitoring the heart rate and other vital signs use electrodes attached to the body, which are impractical for patients who want to move around. Plasma physicist Atsushi Mase, a scientist at Kyushu University in Japan, and colleague Daisuke Nagae have developed a new technique to disconnect people from their electrodes by using microwaves.
The work, which could lead to the development of non-invasive, real-time stress sensing in a variety of environments, is described in a recent issue of the journal Review of Scientific Instruments, which is published by the American Institute of Physics.
The system uses very weak microwaves to irradiate -- and scatter off -- the human body. A sensitive microwave sensor monitors the reflected waves, which change in phase in response to motions of the body, including the regular displacement of the chest during breathing or, the slight movement of the chest caused by the beating heart.
"The skin surface moves slightly," Mase says, "synchronizing to respiration and heart beat."
Using signal processing algorithms and techniques to filter out the effects of random body motions, Mase and Nagae were able to detect changes in heart rate in near real-time, which allows an evaluation of autonomic nervous system activity.
"We plan to apply the system to various conditions, including for clinical use -- such as for the overnight monitoring of human vital signs -- and as a daily health monitor, including detecting signs of sleepiness in drivers and preventing stress-related illnesses," he says. In the future, the system could even be used as a security monitor to distinguish the subtle signs of stress in potential terrorists.
INFORMATION:
The article, "Measurement of heart rate variability and stress evaluation by using microwave reflectometric vital signal sensing" by Daisuke Nagae and Atsushi Mase appears in the journal Review of Scientific Instruments. See:
http://link.aip.org/link/rsinak/v81/i9/p094301/s1
Journalists may request a free PDF of this article by contacting jbardi@aip.org
REVIEW OF SCIENTIFIC INSTRUMENTS
Review of Scientific Instruments, published by the American Institute of Physics, is devoted to scientific instruments, apparatus, and techniques. Its contents include original and review articles on instruments in physics, chemistry, and the life sciences; and sections on new instruments and new materials. One volume is published annually. Conference proceedings are occasionally published and supplied in addition to the Journal's scheduled monthly issues. RSI publishes information on instruments, apparatus, techniques of experimental measurement, and related mathematical analysis. Since the use of instruments is not confined to the physical sciences, the journal welcomes contributions from any of the physical and biological sciences and from related cross-disciplinary areas of science and technology. See: http://rsi.aip.org/
ABOUT AIP
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.
Washington, D.C. (November 9, 2010) -- A switch to wind energy will help reduce greenhouse gas emissions -- and reduce the global warming they cause. But there's a catch, says climate researcher Diandong Ren, a research scientist at the University of Texas at Austin in a paper appear in the AIP's Journal of Renewable and Sustainable Energy: rising temperatures decrease wind speeds, making for less power bang for the wind turbine buck.
The prevailing winds in the "free" atmosphere about 1,000 meters above the ground are maintained by a temperature gradient that decreases ...
Washington, D.C. (November 9, 2010) -- Microscopically porous polymer membranes have numerous applications in microfluidics, where they can act as filters, masks for surface patterning, and even as components in 3D devices in which the perforations in stacked membranes are aligned to form networks of channels for the flow of fluids.
In the AIP journal Biomicrofluidics, Hongkai Wu, a chemist at Hong Kong University of Science and Technology, and his colleagues describe a simple new method using just one photolithographic step to fabricate free-standing polymer membranes ...
Washington, D.C. (November 9, 2010) -- Researchers at the University of Maryland have proposed a scheme for detecting a concealed source of radioactive material without searching containers one by one. Detection of radioactive material concealed in shipping containers is important in the early prevention of "dirty" bomb construction. The concept, described in the Journal of Applied Physics, is based on the gamma-ray emission from the radioactive material that would pass through the shipping container walls and ionize the surrounding air.
The facilitated breakdown of ...
Washington, D.C. (November 9, 2010) -- Walk into nearly any science museum worth its salt and you're likely to see a Foucault pendulum, a simple but impressive device for observing the Earth's rotation. Such pendulums have been around for more than 150 years, and little about how they work remains a mystery today.
The only problem, according to Argentinean researcher Horacio Salva, is that the devices are generally large and unwieldy, making them impractical to install in places where space is at a premium. This limitation was something he and his colleagues at the Centro ...
At the current pace of research and development, global oil will run
out 90 years before replacement technologies are ready, says a new
University of California, Davis, study based on stock market
expectations.
The forecast was published online Monday (Nov. 8) in the journal
Environmental Science & Technology. It is based on the theory that
long-term investors are good predictors of whether and when new
energy technologies will become commonplace.
"Our results suggest it will take a long time before renewable
replacement fuels can be self-sustaining, at least ...
A team of international researchers led by ancient DNA experts from the University of Adelaide has resolved the longstanding issue of the origins of the people who introduced farming to Europe some 8000 years ago.
A detailed genetic study of one of the first farming communities in Europe, from central Germany, reveals marked similarities with populations living in the Ancient Near East (modern-day Turkey, Iraq and other countries) rather than those from Europe.
Project leader Professor Alan Cooper, Director of the Australian Centre for Ancient DNA (ACAD) at the University ...
Astronomers at The University of Warwick and the University of Sheffield have helped discover an unusual star system which looks like, and may even once have behaved like, a game of snooker.
The University of Warwick and Sheffield astronomers played a key role in an international team that used two decades of observations from many telescopes around the world. The UK astronomers helped discover this "snooker like" star system through observations and analysis of data from an astronomical camera known as ULTRACAM designed by the British researchers on the team.
They ...
Kyoto, Japan -- As if borrowing from a scene in a science fiction movie, researchers at Kyoto University have successfully developed a kind of tractor beam that can be used to manipulate the network of the molecules. In a paper soon to be published in Physical Review Letters, the team has demonstrated a technique using terahertz pulses that could have broad applications in the chemical and pharmaceutical industries.
Terahertz waves, an area of specialty for the Koichiro Tanaka lab at Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS), exist in ...
A recommendation letter could be the chute in a woman's career ladder, according to ongoing research at Rice University. The comprehensive study shows that qualities mentioned in recommendation letters for women differ sharply from those for men, and those differences may be costing women jobs and promotions in academia and medicine.
Funded by the National Science Foundation, Rice University professors Michelle Hebl and Randi Martin and graduate student Juan Madera, now an assistant professor at the University of Houston, reviewed 624 letters of recommendation for 194 ...
Membrane-associated receptors, channels and transporters are among the most important drug targets for the pharmaceutical industry. The search for new drugs resembles looking for a needle in a haystack. Therefore new analytical techniques are required which facilitate the simultaneous screening of a large library of compounds across a variety of membrane proteins. However, this class of methods is still at the early stages of development. The group of Prof. Dr. Robert Tampé, in collaboration with the Walter Schottky Institute at Technical University Munich, has now presented ...