PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Membrane enzymes 'stop and frisk' proteins indiscriminately

New insights may explain difficulty of finding drugs for infectious disease

2013-12-05
(Press-News.org) Contact information: Vanessa McMains
vmcmain1@jhmi.edu
410-502-9410
Johns Hopkins Medicine
Membrane enzymes 'stop and frisk' proteins indiscriminately New insights may explain difficulty of finding drugs for infectious disease

For what is believed to be the first time, researchers at The Johns Hopkins University have illuminated the inner workings of an important class of enzymes located inside the outer envelopes of cells. Much to their surprise, they report, these protein cutters, called rhomboid proteases, are entirely different than nearly every other type of enzyme studied, showing no attraction to the proteins they cut and being extremely slow in making their cuts.

The researchers say their findings may explain why efforts to design drugs targeting the enzymes, which are involved in Parkinson's disease and parasite infections, have so far failed. A summary of their research will be published in the journal Cell on Dec. 5.

"The properties that would be seen as a problem for most enzymes are precisely what give rhomboid proteases their unique function in the cell," says Sinisa Urban, Ph.D., associate professor of molecular biology and genetics at the school of medicine and the Howard Hughes Medical Institute. "Our results indicate that to catch and cut all unstable proteins in cell membranes, rhomboid proteases must 'stop and frisk' all of them indiscriminately, and their cut rate must be slow enough to allow stable proteins to escape without injury."

Enzymes are essentially proteins that modify molecules, such as other proteins. In comparing enzymes, scientists analyze their efficiency, which depends on two factors: the "magnetism" or attraction between an enzyme and its "prey" and the speed with which the enzyme makes its modifications.

Most enzymes work in a watery environment, which makes them relatively easy to study in laboratories. However, the oily layer of fat molecules that creates a boundary between the inside and outside of a cell is a drastically different environment. It is thicker; it lacks water, which is usually required for enzymes to work; and it is two-dimensional, which limits the positioning of enzymes and their prey. Despite these differences, many researchers had assumed that all enzymes worked in the same way, whether they resided in watery or oily environments.

To explore that assumption, Urban's team needed to test the speed of rhomboid proteases. But Seth Dickey, Ph.D., the lead author of the study, explains that measuring the speed of a membrane enzyme the traditional way was something like having people begin a race inside a mile-long tunnel where it can't be seen. "We didn't have the tools to allow us to see the beginning of the race, when the enzymes are fastest and just starting their work," he says.

To overcome this difficulty, Urban's team first synchronized the enzymes by setting up their "race" under acidic conditions, which inactivates rhomboid proteases. In this way, the researchers were able to turn the enzyme off and keep it off until they neutralized the acidity when they were ready to begin monitoring the race.

What the team witnessed were among the slowest enzymes ever, Urban says. They took more than two and a half minutes to make each cut, whereas most enzymes take only hundredths of a second. In addition to being slow, the enzymes showed no attraction to some proteins over others, as most enzymes do.

While these findings were surprising, Urban thinks there is a reasonable explanation. Normally, rhomboid proteases are probably acting as quality control enzymes that cut up unstable proteins before they can do any damage to the organism, he suggests. In watery environments, unstable proteins are quite wobbly and are easily recognized and destroyed by other quality control enzymes. Recognizing unstable proteins in oily environments is more difficult because fat molecules support the proteins and give them the appearance of being stable.

From their previous work, the team knows that rhomboid proteases resemble water-filled barrels with side gates for protein entry. Their latest work suggests that stable and unstable proteins alike enter the side gate. Stable proteins likely remain intact and drift back out into the membrane before the enzyme's slow scissors have a chance to clip them, while unstable proteins start to wobble in the watery interior and have a hard time exiting the enzyme's barrel. There, the enzyme will clip them, allowing the cell to recycle them for spare parts.

"We hope this new enzyme synchronizing technique and the insights we made will be widely applied to all membrane-embedded enzymes," says Urban.

He notes that membrane-embedded enzymes include enzymes that have been implicated in a wide variety of diseases: from Alzheimer's disease to leukemia to viral, bacterial and fungal infections. For example, gamma secretase is a membrane enzyme in charge of processing the protein beta-amyloid. Clipping beta-amyloid in the wrong place seems to lead to clumps of the protein in the brains of Alzheimer's patients. Urban says that a proper understanding of membrane enzymes is paramount to finding drugs that modify their behavior.



INFORMATION:



Other authors of the report include Rosanna Baker and Sangwoo Cho of The Johns Hopkins University School of Medicine and the Howard Hughes Medical Institute.

This work was supported by grants from the National Institute of Allergy and Infectious Diseases (2R01AI066025), the Howard Hughes Institute and the David and Lucile Packard Foundation.



ELSE PRESS RELEASES FROM THIS DATE:

Sanford-Burnham researchers identify new target to treat psoriasis

2013-12-05
Sanford-Burnham researchers identify new target to treat psoriasis Scientists identify a molecular pathway that rebalances the immune system by turning down inflammatory T-cell responses providing a new target to treat inflammatory ailments ...

Protein clumps as memory

2013-12-05
Protein clumps as memory Yeast cells are able to form a memory through an aggregate Yeast has a somewhat complicated love life: on the one hand, a mother cell can produce genetically identical daughter cells through mitosis (cell division); on the other hand, yeast cells, ...

Geoengineering approaches to reduce climate change unlikely to succeed

2013-12-05
Geoengineering approaches to reduce climate change unlikely to succeed Reducing the amount of sunlight reaching the planet's surface by geoengineering may not undo climate change after all. Two German researchers used a simple energy balance analysis to explain ...

Probiotic therapy alleviates autism-like behaviors in mice

2013-12-05
Probiotic therapy alleviates autism-like behaviors in mice Autism spectrum disorder (ASD) is diagnosed when individuals exhibit characteristic behaviors that include repetitive actions, decreased social interactions, and impaired communication. Curiously, ...

NIH-funded scientists describe how mosquitoes are attracted to humans

2013-12-05
NIH-funded scientists describe how mosquitoes are attracted to humans Researchers identify compounds that reduce attraction, lure mosquitoes to traps WHAT: Scientists at the University of California, Riverside have ...

Large-scale erythrocyte production method established using erythrocyte progenitor cells

2013-12-05
Large-scale erythrocyte production method established using erythrocyte progenitor cells By transducing two genes (c-MYC and BCL-XL) into iPS cells and ES cells, a Kyoto University research team led by Prof. Koji ...

What is the central analgesic mechanism of acupuncture for migraine?

2013-12-05
What is the central analgesic mechanism of acupuncture for migraine? The central analgesic mechanism of acupuncture for migraine remains poorly understood. Acupuncture has been shown to become a recommended treatment for migraine sufferers. However, a single acupuncture ...

Who is the culprit to cause memory impairment during brain aging?

2013-12-05
Who is the culprit to cause memory impairment during brain aging? The N-methyl-D-aspartic acid (NMDA) receptor dysfunction in the brain of aged animals has been shown. In older rodents, N-methyl-D-aspartate receptor 2B subunit gene expression declines significantly ...

Pre-moxibustion and moxibustion prevent Alzheimer's disease

2013-12-05
Pre-moxibustion and moxibustion prevent Alzheimer's disease An increasing number of clinical and animal studies have confirmed that acupuncture is effective for the treatment of Alzheimer's disease. Moxibustion is reported to be more effective than electro-acupuncture ...

Better water purification with seeds from Moringa trees

2013-12-05
Better water purification with seeds from Moringa trees Seeds from Moringa oleifera trees can be used to purify water. Uppsala University leads a research group which has discovered that seed material can give a more efficient purification process than conventional ...

LAST 30 PRESS RELEASES:

Eye for trouble: Automated counting for chromosome issues under the microscope

The vast majority of US rivers lack any protections from human activities, new research finds

Ultrasound-responsive in situ antigen "nanocatchers" open a new paradigm for personalized tumor immunotherapy

Environmental “superbugs” in our rivers and soils: new one health review warns of growing antimicrobial resistance crisis

Triple threat in greenhouse farming: how heavy metals, microplastics, and antibiotic resistance genes unite to challenge sustainable food production

Earthworms turn manure into a powerful tool against antibiotic resistance

AI turns water into an early warning network for hidden biological pollutants

Hidden hotspots on “green” plastics: biodegradable and conventional plastics shape very different antibiotic resistance risks in river microbiomes

Engineered biochar enzyme system clears toxic phenolic acids and restores pepper seed germination in continuous cropping soils

Retail therapy fail? Online shopping linked to stress, says study

How well-meaning allies can increase stress for marginalized people

Commercially viable biomanufacturing: designer yeast turns sugar into lucrative chemical 3-HP

Control valve discovered in gut’s plumbing system

George Mason University leads phase 2 clinical trial for pill to help maintain weight loss after GLP-1s

Hop to it: research from Shedd Aquarium tracks conch movement to set new conservation guidance

Weight loss drugs and bariatric surgery improve the body’s fat ‘balance:’ study

The Age of Fishes began with mass death

TB harnesses part of immune defense system to cause infection

Important new source of oxidation in the atmosphere found

A tug-of-war explains a decades-old question about how bacteria swim

Strengthened immune defense against cancer

Engineering the development of the pancreas

The Journal of Nuclear Medicine ahead-of-print tip sheet: Jan. 9, 2026

Mount Sinai researchers help create largest immune cell atlas of bone marrow in multiple myeloma patients

Why it is so hard to get started on an unpleasant task: Scientists identify a “motivation brake”

Body composition changes after bariatric surgery or treatment with GLP-1 receptor agonists

Targeted regulation of abortion providers laws and pregnancies conceived through fertility treatment

Press registration is now open for the 2026 ACMG Annual Clinical Genetics Meeting

Understanding sex-based differences and the role of bone morphogenetic protein signaling in Alzheimer’s disease

Breakthrough in thin-film electrolytes pushes solid oxide fuel cells forward

[Press-News.org] Membrane enzymes 'stop and frisk' proteins indiscriminately
New insights may explain difficulty of finding drugs for infectious disease