(Press-News.org) Contact information: Jerry Barach
jerryb@savion.huji.ac.il
972-258-82904
The Hebrew University of Jerusalem
Neurotransmitters resarch can promote better drugs for brain disorders
Hebrew University scientists decipher mechanism
Jerusalem, January 7, 2014 -- Although drugs have been developed that inhibit the imbalance of neurotransmitters in the brain – a condition which causes many brain disorders and nervous system diseases – the exact understanding of the mechanism by which these drugs work has not yet been fully explained.
Now, researchers at the Hebrew University of Jerusalem, using baker's yeast as a model, have deciphered the mode by which the inhibitors affect the neurological transmission process and have even been able to manipulate it.
Their work, reported in a recent article in the Journal of Biological Chemistry, raises hopes that these insights could eventually guide clinical scientists to develop new and more effective drugs for brain disorders associated with neurotransmitter imbalance.
All of the basic tasks of our existence are executed by the brain – whether it is breathing, heartbeat, memory building or physical movements – which depend on the highly regulated and efficient release of neurotransmitters – chemicals that act as messengers enabling extremely rapid connections between the neurons in the brain.
When even one part of the everyday "conversation" between neighboring neurons breaks down, the results can be devastating. Many brain disorders and nervous system diseases, including Huntington's disease, various motor dysfunctions and even Parkinson's disease, have been linked to problems with neurotransmitter transport.
The neurotransmitters are stored in the neuron in small, bubble-like compartments, called vesicles, containing transport proteins that are responsible for the storage of the neurotransmitters into the vesicles.
The storage of certain neurotransmitters is controlled by what is called the vesicular monoamine transporter (VMAT), which is known to transport a variety of vital neurotransmitters, such as adrenaline, dopamine and serotonin.
In addition, it can also transport the detrimental MPP+, a neurotoxin involved in models of Parkinson's disease.
A number of studies demonstrated the significance of VMAT as a target for drug therapy in a variety of pathologic states, such as high blood pressure, hyperkinetic movement disorders and Tourette syndrome.
Many of the drugs that target VMAT act as inhibitors, including the classical VMAT2 inhibitor, tetrabenazine. Tetrabenazine has long been used for the treatment of motor dysfunctions associated with Huntington's disease and other movement disorders. However, the mechanism by which the drug affects the storage of neurotransmitters was not fully understood.
The Hebrew University study set out, therefore, to achieve an understanding of the basic biochemical mechanism underlying the VMAT reaction, with a view towards better controlling it through new drug designs.
The research was conducted by in the laboratory of Prof. Shimon Schuldiner of the Hebrew University's Department of Biological Chemistry; Dr.Yelena Ugolev, postdoctoral fellow in the laboratory; and research students Tali Segal, Dana Yaffe and Yael Gros.
To identify protein sequences responsible for tetrabenazine binding, the Hebrew University scientists harnessed the power of yeast genetics along with the method of directed evolution.
Expressing the human protein VMAT in baker's yeast cells confers them with the ability to grow in the presence of toxic substrates, such as neurotoxin MPP+. Directed evolution mimics natural evolution in the laboratory and is a method used in protein engineering.
By using rounds of random mutations targeted to the gene encoding the protein of interest, the proteins can be tuned to acquire new properties or to adapt to new functions or environment.
The study led to identification of important flexible domains (or regions) in the structure of the VMAT, responsible for producing optional rearrangements in tetrabenazine binding, and also enabling regulation of the velocity of the neurotransmitter transporter.
Utilizing these new, controllable adaptations could serve as a guide for clinical scientists to develop more efficient drugs for brain disorders associated with neurotransmitter imbalance, say the Hebrew University researchers.
INFORMATION:
Neurotransmitters resarch can promote better drugs for brain disorders
Hebrew University scientists decipher mechanism
2014-01-07
ELSE PRESS RELEASES FROM THIS DATE:
The 5 fingers of our feathered friends: New research results on the evolution of bird wings
2014-01-07
The 5 fingers of our feathered friends: New research results on the evolution of bird wings
In most tetrapods (land vertebrates) the fourth (ring) finger is the first to develop in the embryo. And in birds, the finger on the outside of the hand (posterior, ...
Gemini Planet Imager first light
2014-01-07
Gemini Planet Imager first light
World's most powerful exoplanet camera turns its eye to the sky
This news release is available in Spanish.
After nearly a decade of development, construction, and testing, the world's most advanced instrument for directly imaging ...
To keep their eye on the ball, batters mostly use their heads
2014-01-07
To keep their eye on the ball, batters mostly use their heads
How do hitters track pitches in baseball? Study in optometry and vision science gives new insights
Philadelphia, Pa. (January 7, 2014) - Baseball players at bat follow coaches' advice to "keep ...
New algorithm can dramatically streamline solutions to the 'max flow' problem
2014-01-07
New algorithm can dramatically streamline solutions to the 'max flow' problem
Research could boost the efficiency even of huge networks like the Internet
Finding the most efficient way to transport items across a network like the U.S. highway system or the ...
When germs attack: A lens into the molecular dance
2014-01-07
When germs attack: A lens into the molecular dance
Researchers at Johns Hopkins have zoomed in on what is going on at the molecular level when the body recognizes and defends against an attack of pathogens, and the findings, they say, could influence how drugs are ...
Synthetic genetic clock checks the thermometer
2014-01-07
Synthetic genetic clock checks the thermometer
Rice University leads study to counter effects of temperature on synthetic gene circuits
HOUSTON – (Jan. 7, 2014) – Genetic systems run like clockwork, attuned to temperature, time of day and many other factors as they regulate ...
Dabrafenib in melanoma: Added benefit not proven
2014-01-07
Dabrafenib in melanoma: Added benefit not proven
No differences could be shown for mortality, symptoms and quality of life / concerning side effects, data too uncertain
Dabrafenib (trade name: Tafinlar) has been approved in Germany ...
Aflibercept in macular oedema: Added benefit not proven
2014-01-07
Aflibercept in macular oedema: Added benefit not proven
Neither the new drug nor the comparator therapy was used in accordance with their approvals in the studies
For the third time in one year, the German Institute for Quality ...
Increased risk of prostate cancer in African American men; implications for PSA screening
2014-01-07
Increased risk of prostate cancer in African American men; implications for PSA screening
New Rochelle, NY, January 7, 2014—African American men have an increased risk of prostate cancer and are two times more likely than Caucasian American ...
Sugar-burning in the adult human brain is associated with continued growth, and remodeling
2014-01-07
Sugar-burning in the adult human brain is associated with continued growth, and remodeling
Research published in the journal Cell Metabolism shows that hotspots of fuel consumption in the adult brain also show key characteristics of developing brain regions
SEATTLE, ...
LAST 30 PRESS RELEASES:
Fig trees convert atmospheric CO2 to stone
Intra-arterial tenecteplase for acute stroke after successful endovascular therapy
Study reveals beneficial microbes that can sustain yields in unfertilized fields
Robotic probe quickly measures key properties of new materials
Climate change cuts milk production, even when farmers cool their cows
Frozen, but not sealed: Arctic Ocean remained open to life during ice ages
Some like it cold: Cryorhodopsins
Demystifying gut bacteria with AI
Human wellbeing on a finite planet towards 2100: new study shows humanity at a crossroads
Unlocking the hidden biodiversity of Europe’s villages
Planned hydrogen refuelling stations may lead to millions of euros in yearly losses
Planned C-sections increase the risk of certain childhood cancers
Adults who have survived childhood cancer are at increased risk of severe COVID-19
Drones reveal extreme coral mortality after bleaching
New genetic finding uncovers hidden cause of arsenic resistance in acute promyelocytic leukemia
Native habitats hold the key to the much-loved smashed avocado’s future
Using lightning to make ammonia out of thin air
Machine learning potential-driven insights into pH-dependent CO₂ reduction
Physician associates provide safe care for diagnosed patients when directly supervised by a doctor
How game-play with robots can bring out their human side
Asthma: patient expectations influence the course of the disease
UNM physician tests drug that causes nerve tissue to emit light, enabling faster, safer surgery
New study identifies EMP1 as a key driver of pancreatic cancer progression and poor prognosis
XPR1 identified as a key regulator of ovarian cancer growth through autophagy and immune evasion
Flexible, eco-friendly electronic plastic for wearable tech, sensors
Can the Large Hadron Collider snap string theory?
Stuckeman professor’s new book explores ‘socially sustainable’ architecture
Synthetic DNA nanoparticles for gene therapy
New model to find treatments for an aggressive blood cancer
Special issue of Journal of Intensive Medicine analyzes non-invasive respiratory support
[Press-News.org] Neurotransmitters resarch can promote better drugs for brain disordersHebrew University scientists decipher mechanism