(Press-News.org) Contact information: Jeffrey Bright
jeff.bright@joslin.harvard.edu
Joslin Diabetes Center
Joslin researchers determine hormone linked to improved glucose metabolism activates browning of fat
BOSTON – (January 9, 2013) – Researchers at Joslin Diabetes Center have discovered that a hormone long associated with weight loss and improved glucose metabolism is linked to activation of calorie-burning brown fat. This finding could have implications for production of new medications for type 2 diabetes and obesity. The results are published in the January issue of the Journal of Clinical Investigation in a paper titled "Interplay between FGF21 and Insulin Action in the Liver for the Regulation of Metabolism."
For the past decade, FGF21 has been known to play a role in metabolic regulation. Its mechanism of action, however, remained unidentified.
"So what we were interested in learning is how does FGF21 stimulate both weight loss and improve glucose metabolism," said C. Ronald Kahn, M.D., Chief Academic Officer at Joslin Diabetes Center, Mary K. Iacocca Professor of Medicine at Harvard Medical School, and the corresponding author on the paper. "And this study shows that one big factor in this is the ability of FGF21 to stimulate what's called browning of white fat, that is where the white fat becomes more energetically active and begins to burn energy rather than store energy."
Brown fat, shown to exist in humans in 2009 by researchers at Joslin, burns calories to produce heat. White fat can act in a similar manner when stimulated, a process known as "browning." Determining stimulation mechanisms can provide researchers with a first step towards using brown fat as a treatment for obesity and type 2 diabetes.
FGF21 is secreted from the liver, prompting the researchers to question if its metabolic-related activity depended on molecular interactions within the liver tissues. They tested this using insulin resistant animal models created through two different methods—in one model, they created obesity-induced insulin resistance through a high fat diet; in the other, they knocked out the insulin signaling in liver tissues.
They then introduced FGF21 to the system continuously for two weeks via an inserted pump. During that time, they monitored weight, blood glucose levels, and lipid levels. After the two weeks ended, they harvested liver tissues to analyze their makeup.
"What we found was that even without insulin signaling in the liver, FGF21 could still improve glucose metabolism," said Dr. Kahn. To determine that the improvements were due to the browning of white fat, rather than the activation of brown fat, they surgically removed the pads of brown fat found in the animals, so that any fat-based energy burning would surely have to be a result of white fat browning.
"So in those animals, where most of the brown fat is removed, FGF 21 still works on the remaining white fat because of browning," he said.
FGF21 also regulates lipid metabolism, and that function was determined to be dependent on functioning insulin signaling in the liver.
Proving that FGF21 activates the browning of white fat is a large step forward in understanding the process of how variations of brown fat assist in metabolic regulation. Identifying this hormone as a major player in this activation has implications for the eventual creation of a brown fat stimulating drug.
"As with any new drug or hormone, of course we need to learn not only its good effects, but also any potential side effects," said Dr. Kahn. "And I think that's where a lot of the effort is now…by pharmaceutical companies."
Drug creation aside, Dr. Kahn thinks this discovery is interesting from a basic biology point of view.
"FGF 21 wasn't even known to exist until 10 years ago, and now we know it is a new circulating hormone, that is regulated in feeding and fasting," he said. "And I think that this is another piece of evidence that we don't understand all there is to know yet about metabolic regulation even though people have been studying it for literally hundreds of years."
INFORMATION:
About Joslin Diabetes Center
Joslin Diabetes Center, based in Boston, Massachusetts, undertakes diabetes research, clinical care, education and health and wellness programs on a global scale. Joslin is dedicated to ensuring that people with diabetes live long, healthy lives and offers real progress in preventing and curing diabetes. Joslin is an independent, nonprofit institution affiliated with Harvard Medical School, and is recognized worldwide for driving innovative solutions in diabetes prevention, research, education, and care.
Our mission is to prevent, treat and cure diabetes. Our vision is a world free of diabetes and its complications. For more information, visit http://www.joslin.org.
About Joslin Research
Joslin Research comprises the most comprehensive and productive effort in diabetes research under one roof anywhere in the world. With 30‐plus faculty‐level investigators, Joslin researchers focus on unraveling the biological, biochemical and genetic processes that underlie the development of type 1 and type 2 diabetes and related complications.
Joslin research is highly innovative and imaginative, employing the newest tools in genetics, genomics and proteomics to identify abnormalities that may play a role in the development of diabetes and its complications. Joslin Clinic patients, and others with diabetes, have the option of participating in clinical trials at Joslin to help translate basic research into treatment innovations.
Joslin has one of the largest diabetes training programs in the world, educating 150 M.D. and Ph.D. researchers each year, many of whom go on to head diabetes initiatives at leading institutions all over the globe. For more information, visit http://www.joslinresearch.org.
Joslin researchers determine hormone linked to improved glucose metabolism activates browning of fat
2014-01-09
ELSE PRESS RELEASES FROM THIS DATE:
NIH-funded scientists develop mouse model for atopic dermatitis
2014-01-09
NIH-funded scientists develop mouse model for atopic dermatitis
Study identifies potential targets for eczema treatment
A study reports the development of a new mouse model for atopic dermatitis, an inflammatory skin disorder ...
Rewiring stem cells
2014-01-09
Rewiring stem cells
A fast and comprehensive method for determining the function of genes could greatly improve our understanding of a wide range of diseases and conditions, such as heart disease, liver disease and cancer.
The method uses stem cells ...
Why is type 2 diabetes an increasing problem?
2014-01-09
Why is type 2 diabetes an increasing problem?
Popular theory to explain increasing frequency of type 2 diabetes refuted by evidence
Contrary to a common belief, researchers have shown that genetic regions associated with increased risk of type 2 ...
Quantum mechanics explains efficiency of photosynthesis
2014-01-09
Quantum mechanics explains efficiency of photosynthesis
Light-gathering macromolecules in plant cells transfer energy by taking advantage of molecular vibrations whose physical descriptions have no equivalents in classical physics, according to the first unambiguous ...
Europe to suffer from more severe and persistent droughts
2014-01-09
Europe to suffer from more severe and persistent droughts
As Europe is battered by storms, new research reminds us of the other side of the coin. By the end of this century, droughts in Europe are expected to be more frequent and intense due to climate change ...
Newly published survey shows drug shortages still have major impact on patient care
2014-01-09
Newly published survey shows drug shortages still have major impact on patient care
Coalition publishes new evidence on the patient impact of drug shortages in US
According to newly published results from a survey of pharmacy directors, drug shortages remain a serious ...
Myotonic dystrophy disrupts normal control of gene expression in the heart
2014-01-09
Myotonic dystrophy disrupts normal control of gene expression in the heart
HOUSTON – (Jan. 9, 2014) – Disruption of a transcription network controlled by MEF2 in heart tissue of people with myotonic dystrophy type 1 – an inherited form of muscular dystrophy ...
Mystery solved: How nerve impulse generators get where they need to go
2014-01-09
Mystery solved: How nerve impulse generators get where they need to go
Study identifies essential molecule for transport of protein from neuron cell body to axon
COLUMBUS, Ohio – Scientists have solved a longstanding mystery of the central nervous system, showing how a key ...
Surprising new class of 'hypervelocity stars' discovered escaping the galaxy
2014-01-09
Surprising new class of 'hypervelocity stars' discovered escaping the galaxy
An international team of astronomers has discovered a surprising new class of "hypervelocity stars" – solitary stars moving fast enough to escape the gravitational grasp of ...
Study of Nepalese pilgrims challenges diagnosis of acute mountain sickness
2014-01-09
Study of Nepalese pilgrims challenges diagnosis of acute mountain sickness
A study led by University of British Columbia scientists calls into question a widely used method of diagnosing acute mountain sickness.
The Lake Louise Score Questionnaire has ...