(Press-News.org) Contact information: Kris Van der Beken
kris.vanderbeken@vib.be
32-924-46611
VIB (the Flanders Institute for Biotechnology)
Plant scientists unravel a molecular switch to stimulate leaf growth
Ghent – 22 January 2014. Mechanisms that determine the size of plants have fascinated plant scientists of all times, however they are far from understood. An international research team led by plant scientists from VIB and Ghent University report an important breakthrough in the scientific journal The Plant Cell. They identified a protein complex that controls the transition from cell division to cell specialization. By extending the activity of the complex during leaf growth, more cells divide, giving rise to larger leaves. These insights can now be used to guide plant breeding initiatives towards higher plant productivity.
More dividing cells, larger leaves
Cell division is essential for growth and development of all multicellular organisms. In plants, leaf growth consists of two different phases. A first phase is characterized by intense cell division, which leads to the formation of many new cells. During the second phase, cell division activity declines, the cells elongate and acquire a certain expertise. In a small leaf that just initiated from the stem, almost all cells are in the active division phase. Later on, when the leaf matures, cells at the top of the leaf switch to the specialization phase. The more time cells stay in the first phase, the more cells are being formed and the bigger the ultimate leaf size will be. It was already known that the protein ANGUSTIFOLIA3 (AN3) fulfils an important role in determining the timing and activity of cell division in the leaf. However, the precise mode of action of AN3 was not yet understood.
State-of-the-art techniques
To unravel a biological process on a molecular level, scientists typically develop plants in which genes are switched on or off. Studying the effect of these "aberrant" situations on plant growth can in some cases resolve the function of these genes. However, this approach often is like finding a needle in a haystack. Plant scientists of VIB and Ghent University therefore used various state-of-the-art techniques to study the effect of the "aberrant" molecular situation on all genes and all proteins at once. As such, the researchers could elucidate the function of AN3 in the model plant Arabidopsis.
Unpacking DNA to switch on gene activity
All cells of a particular plant contain the same genetic information, which is stored in their DNA. DNA is packed in a condensed structure, the chromatin. When certain genes need to be activated, the chromatin will be unpacked to make specific DNA regions accessible. This process is mediated by so-called "chromatin remodeling" complexes. An international team of scientists led by Dirk Inzé of VIB and Ghent University demonstrated that AN3 functions as part of a chromatin remodeling complex. More precisely, AN3 recruits the chromatin remodeling complex towards specific DNA regions that harbor cell division genes. As long as AN3 is active and keeps recruiting the chromatin remodeling complex, cells retain their division activity, resulting in plant organs with increased size. The AN3 protein complex regulates the length of the cell division phase in the leaf and hence the transition from cell division towards cell specialization.
This research was performed in collaboration with the University of Pennsylvania (USA), the French "Institut de Biologie des Plantes", the Polish University of Warsaw and the Polish Academy of Sciences. The obtained insights can now be used to orchestrate plant breeding activities more efficiently, for example towards higher plant productivity.
###
Publication
Liesbeth Vercruyssen et al.
binds to SWI/SNF chromatin remodeling complexes to regulate transcription during Arabidopsis leaf development.
The Plant Cell online 17 januari 2014 doi: 10.1105/tpc 113.115907
Note to the editor
Credits
When reporting on this research, please mention all partners involved.
VIB
VIB is a non-profit research institute in life sciences. About 1,300 scientists conduct strategic basic research on the molecular mechanisms that are responsible for the functioning of the human body, plants, and microorganisms. Through a close partnership with four Flemish universities − UGent, KU Leuven, University of Antwerp, and Vrije Universiteit Brussel − and a solid funding program, VIB unites the forces of 76 research groups in a single institute. The goal of the research is to extend the boundaries of our knowledge of life. Through its technology transfer activities, VIB translates research results into products for the benefit of consumers and patients and contributes to new economic activity. VIB develops and disseminates a wide range of scientifically substantiated information about all aspects of biotechnology. More information: www.vib.be.
Ghent University
After more than twenty years of uninterrupted growth, Ghent University is now one of the most important institutions of higher education and research in the Low Countries. Ghent University yearly attracts over 35,000 students, with a foreign student population of over 2,200 EU and non-EU citizens. Ghent University offers a broad range of study programs in all academic and scientific fields. With a view to cooperation in research and community service, numerous research groups, centers and institutes have been founded over the years. For more information www.UGent.be. END
Plant scientists unravel a molecular switch to stimulate leaf growth
2014-01-24
ELSE PRESS RELEASES FROM THIS DATE:
The origin of the evil conformation
2014-01-24
"When they are healthy, they look like tiny spheres; when they are malignant, they appear as cubes" stated Giuseppe Legname, ...
When hospitals share patient records, emergency patients benefit, study suggests
2014-01-24
ANN ARBOR, Mich. — As hospitals and doctors' offices across ...
Rainforests in Far East shaped by humans for the last 11,000 years
2014-01-24
New research from Queen's University Belfast shows that the tropical forests of South East Asia have been shaped by humans for the last 11,000 years.
The rain forests of Borneo, Sumatra, Java, ...
Loyola physician research shows gap in care for childhood cancer survivors
2014-01-24
MAYWOOD, Ill. – A recent study shows that many internists feel ill-equipped to care ...
Infections damage our ability to form spatial memories
2014-01-24
Increased inflammation following an infection impairs the brain's ability to form spatial memories – according to new research. The impairment results from a decrease in glucose metabolism in the ...
A good tern deserves another
2014-01-24
The use of portable, wireless cameras and monitoring equipment for recording and transmitting footage of wildlife is perhaps familiar to anyone who watches nature programs on TV. However, common ...
Researchers developing new approach for imaging dense breasts for abnormalities
2014-01-24
(Lebanon, NH, 1/24/14) — Dartmouth engineers and radiologists are developing new approaches ...
Simple protein test could improve prediction of survival rates for patients with head and neck cance
2014-01-24
Scientists from The University of Manchester – part of the Manchester Cancer Research Centre - used a simple protein test that could prove more ...
Do doctors spend too much time looking at computer screen?
2014-01-24
CHICAGO --- When physicians spend too much time looking at the computer screen in the exam room, nonverbal ...
Cause identified for children and adults with joint, skeletal and skin problems
2014-01-24
PUBLIC RELEASE DATE: 24-Jan-2014
[
| E-mail
]
var addthis_pub="eurekalert"; var addthis_options = "favorites, delicious, digg, facebook, twitter, google, newsvine, reddit, slashdot, stumbleupon, buzz, more"
Share
Contact: Alison Barbuti
alison.barbuti@manchester.ac.uk
44-016-127-58383
University of Manchester
Cause identified for children and adults with joint, skeletal and skin problems
Scientists from the University of Manchester and Central Manchester University Hospitals NHS Foundation Trust have identified the cause of a rare condition called Leri's ...